信息融合方法在脑损伤检测中的应用

M. Ganna, M. Rombaut, R. Goutte, Yuemin Zhu
{"title":"信息融合方法在脑损伤检测中的应用","authors":"M. Ganna, M. Rombaut, R. Goutte, Yuemin Zhu","doi":"10.1109/ICOSP.2002.1179982","DOIUrl":null,"url":null,"abstract":"Automatic segmentation of brain lesions, such as multiple sclerosis in MRI images, is a complex operation. One of the main difficulties is to optimize the dilemma between the false positives and false negatives present in the segmented image. We propose here a new approach to this problem. The idea is to exploit the complementary results from different segmentation algorithms as well as a priori knowledge to reduce false positives. The method starts with modeling inaccuracy about the borders of the segmented regions. The logic rules are then defined in order to combine the white matter image and lesions within the framework of evidence theory. The results show that brain lesion detection is substantially improved using this data fusion approach.","PeriodicalId":159807,"journal":{"name":"6th International Conference on Signal Processing, 2002.","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Improvement of brain lesions detection using information fusion approach\",\"authors\":\"M. Ganna, M. Rombaut, R. Goutte, Yuemin Zhu\",\"doi\":\"10.1109/ICOSP.2002.1179982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic segmentation of brain lesions, such as multiple sclerosis in MRI images, is a complex operation. One of the main difficulties is to optimize the dilemma between the false positives and false negatives present in the segmented image. We propose here a new approach to this problem. The idea is to exploit the complementary results from different segmentation algorithms as well as a priori knowledge to reduce false positives. The method starts with modeling inaccuracy about the borders of the segmented regions. The logic rules are then defined in order to combine the white matter image and lesions within the framework of evidence theory. The results show that brain lesion detection is substantially improved using this data fusion approach.\",\"PeriodicalId\":159807,\"journal\":{\"name\":\"6th International Conference on Signal Processing, 2002.\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"6th International Conference on Signal Processing, 2002.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOSP.2002.1179982\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"6th International Conference on Signal Processing, 2002.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSP.2002.1179982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

脑损伤的自动分割,如MRI图像中的多发性硬化症,是一项复杂的操作。其中一个主要的困难是优化分割图像中存在的假阳性和假阴性之间的困境。我们在此提出一个解决这个问题的新方法。其思想是利用不同分割算法的互补结果以及先验知识来减少误报。该方法从分割区域边界的建模不准确开始。为了在证据理论的框架内将白质图像与病变相结合,定义了逻辑规则。结果表明,采用这种数据融合方法,大大提高了脑损伤的检测效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improvement of brain lesions detection using information fusion approach
Automatic segmentation of brain lesions, such as multiple sclerosis in MRI images, is a complex operation. One of the main difficulties is to optimize the dilemma between the false positives and false negatives present in the segmented image. We propose here a new approach to this problem. The idea is to exploit the complementary results from different segmentation algorithms as well as a priori knowledge to reduce false positives. The method starts with modeling inaccuracy about the borders of the segmented regions. The logic rules are then defined in order to combine the white matter image and lesions within the framework of evidence theory. The results show that brain lesion detection is substantially improved using this data fusion approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信