COVID-19下的电力负荷预测

Fariha Kabir Torsha, Ying Lin, Lei Fan, Tae-Eog Lee
{"title":"COVID-19下的电力负荷预测","authors":"Fariha Kabir Torsha, Ying Lin, Lei Fan, Tae-Eog Lee","doi":"10.1109/NAPS52732.2021.9654678","DOIUrl":null,"url":null,"abstract":"The outbreak of novel coronavirus disease in 2020 has profoundly impacted all aspects of lives and posed a unique challenge in energy load forecasting. With the increase of the COVID-19 cases, governments worldwide impose strict social distancing and limit the mobility of the population, which causes a shift in load consumption magnitude and pattern. In this paper, we first identify the most influential COVID-19 features for load reduction. Then, we propose a new load forecasting model that includes the new features. The case study on the New York City data set demonstrates that our new forecasting model can efficiently provide new load prediction in the pandemic period.","PeriodicalId":123077,"journal":{"name":"2021 North American Power Symposium (NAPS)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electricity Load Forecasting under COVID-19\",\"authors\":\"Fariha Kabir Torsha, Ying Lin, Lei Fan, Tae-Eog Lee\",\"doi\":\"10.1109/NAPS52732.2021.9654678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The outbreak of novel coronavirus disease in 2020 has profoundly impacted all aspects of lives and posed a unique challenge in energy load forecasting. With the increase of the COVID-19 cases, governments worldwide impose strict social distancing and limit the mobility of the population, which causes a shift in load consumption magnitude and pattern. In this paper, we first identify the most influential COVID-19 features for load reduction. Then, we propose a new load forecasting model that includes the new features. The case study on the New York City data set demonstrates that our new forecasting model can efficiently provide new load prediction in the pandemic period.\",\"PeriodicalId\":123077,\"journal\":{\"name\":\"2021 North American Power Symposium (NAPS)\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 North American Power Symposium (NAPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAPS52732.2021.9654678\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 North American Power Symposium (NAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAPS52732.2021.9654678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

2020年新型冠状病毒病的爆发深刻影响了人们生活的方方面面,对能源负荷预测提出了独特的挑战。随着新冠肺炎病例的增加,各国政府严格保持社会距离,限制人口流动,导致负荷消耗规模和模式发生变化。在本文中,我们首先确定了对负载降低影响最大的COVID-19特征。然后,我们提出了一个新的负荷预测模型,该模型包含了新的特征。以纽约市数据集为例进行的研究表明,该预测模型能够有效地提供大流行时期的新负荷预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electricity Load Forecasting under COVID-19
The outbreak of novel coronavirus disease in 2020 has profoundly impacted all aspects of lives and posed a unique challenge in energy load forecasting. With the increase of the COVID-19 cases, governments worldwide impose strict social distancing and limit the mobility of the population, which causes a shift in load consumption magnitude and pattern. In this paper, we first identify the most influential COVID-19 features for load reduction. Then, we propose a new load forecasting model that includes the new features. The case study on the New York City data set demonstrates that our new forecasting model can efficiently provide new load prediction in the pandemic period.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信