基于多模态表示的代码搜索方法

Xiao Chen, Junhua Wu
{"title":"基于多模态表示的代码搜索方法","authors":"Xiao Chen, Junhua Wu","doi":"10.1109/QRS-C57518.2022.00078","DOIUrl":null,"url":null,"abstract":"Developers tend to search and reuse code snippets from large-scale corpora while implementing some of the features that existed in development. This will improve the efficiency of development. Code search is to search for semantically relevant code snippets based on a given natural language query. In existing methods, the semantic similarity between code and query is quantified as their distance in the shared vector space. To improve the vector space and map the code vector and query vector into a shared vector space so that the semantically similar code-query pairs are close to each other, we propose a code search method with multimodal representations. It can better enhance the semantic relationship between code snippets and queries. Experiments on Java datasets show that the multimodal representation model MulCS improves the quality of code search. MulCS outperforms several existing advanced models in several performance metrics.","PeriodicalId":183728,"journal":{"name":"2022 IEEE 22nd International Conference on Software Quality, Reliability, and Security Companion (QRS-C)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Code Search Method Based on Multimodal Representation\",\"authors\":\"Xiao Chen, Junhua Wu\",\"doi\":\"10.1109/QRS-C57518.2022.00078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Developers tend to search and reuse code snippets from large-scale corpora while implementing some of the features that existed in development. This will improve the efficiency of development. Code search is to search for semantically relevant code snippets based on a given natural language query. In existing methods, the semantic similarity between code and query is quantified as their distance in the shared vector space. To improve the vector space and map the code vector and query vector into a shared vector space so that the semantically similar code-query pairs are close to each other, we propose a code search method with multimodal representations. It can better enhance the semantic relationship between code snippets and queries. Experiments on Java datasets show that the multimodal representation model MulCS improves the quality of code search. MulCS outperforms several existing advanced models in several performance metrics.\",\"PeriodicalId\":183728,\"journal\":{\"name\":\"2022 IEEE 22nd International Conference on Software Quality, Reliability, and Security Companion (QRS-C)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 22nd International Conference on Software Quality, Reliability, and Security Companion (QRS-C)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/QRS-C57518.2022.00078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 22nd International Conference on Software Quality, Reliability, and Security Companion (QRS-C)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QRS-C57518.2022.00078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

开发人员倾向于在实现开发中存在的一些特性时,从大规模语料库中搜索和重用代码片段。这将提高发展效率。代码搜索是基于给定的自然语言查询,搜索语义相关的代码片段。在现有的方法中,代码和查询之间的语义相似度被量化为它们在共享向量空间中的距离。为了改进向量空间,将代码向量和查询向量映射到一个共享的向量空间中,使语义相似的代码查询对彼此接近,我们提出了一种多模态表示的代码搜索方法。它可以更好地增强代码片段和查询之间的语义关系。在Java数据集上的实验表明,多模态表示模型MulCS提高了代码搜索的质量。MulCS在几个性能指标上优于现有的几种先进模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Code Search Method Based on Multimodal Representation
Developers tend to search and reuse code snippets from large-scale corpora while implementing some of the features that existed in development. This will improve the efficiency of development. Code search is to search for semantically relevant code snippets based on a given natural language query. In existing methods, the semantic similarity between code and query is quantified as their distance in the shared vector space. To improve the vector space and map the code vector and query vector into a shared vector space so that the semantically similar code-query pairs are close to each other, we propose a code search method with multimodal representations. It can better enhance the semantic relationship between code snippets and queries. Experiments on Java datasets show that the multimodal representation model MulCS improves the quality of code search. MulCS outperforms several existing advanced models in several performance metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信