状态估计的集隶属度方法中的粒子滤波

A. Balestrino, A. Caiti, E. Crisostomi
{"title":"状态估计的集隶属度方法中的粒子滤波","authors":"A. Balestrino, A. Caiti, E. Crisostomi","doi":"10.1109/MED.2006.328797","DOIUrl":null,"url":null,"abstract":"This paper introduces a new algorithm where particle filtering techniques and set-membership theory are blended together in one only framework. The idea is to build a recursive filter where, at every step, an approximation of the probability density of the states given the latest observations is provided together with the set of all the possible states consistent with the process and observation models. The results obtained confirm that the advantages furnished by particle filtering and set-membership techniques add up together to obtain more accurate estimates","PeriodicalId":347035,"journal":{"name":"2006 14th Mediterranean Conference on Control and Automation","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Particle Filtering within a Set-Membership Approach to State Estimation\",\"authors\":\"A. Balestrino, A. Caiti, E. Crisostomi\",\"doi\":\"10.1109/MED.2006.328797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a new algorithm where particle filtering techniques and set-membership theory are blended together in one only framework. The idea is to build a recursive filter where, at every step, an approximation of the probability density of the states given the latest observations is provided together with the set of all the possible states consistent with the process and observation models. The results obtained confirm that the advantages furnished by particle filtering and set-membership techniques add up together to obtain more accurate estimates\",\"PeriodicalId\":347035,\"journal\":{\"name\":\"2006 14th Mediterranean Conference on Control and Automation\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 14th Mediterranean Conference on Control and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MED.2006.328797\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 14th Mediterranean Conference on Control and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED.2006.328797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文介绍了一种将粒子滤波技术与集合隶属度理论相结合的新算法。这个想法是建立一个递归过滤器,在每一步中,给定最新观测值的状态概率密度的近似值与与过程和观测模型一致的所有可能状态的集合一起提供。结果表明,粒子滤波和集合隶属度技术的优点加在一起可以得到更精确的估计
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Particle Filtering within a Set-Membership Approach to State Estimation
This paper introduces a new algorithm where particle filtering techniques and set-membership theory are blended together in one only framework. The idea is to build a recursive filter where, at every step, an approximation of the probability density of the states given the latest observations is provided together with the set of all the possible states consistent with the process and observation models. The results obtained confirm that the advantages furnished by particle filtering and set-membership techniques add up together to obtain more accurate estimates
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信