Weining Ren, Kun Jiang, Xinxin Chen, Tuopu Wen, Diange Yang
{"title":"自动驾驶导航中相机、GNSS和IMU自适应传感器融合","authors":"Weining Ren, Kun Jiang, Xinxin Chen, Tuopu Wen, Diange Yang","doi":"10.1109/CVCI51460.2020.9338655","DOIUrl":null,"url":null,"abstract":"The Visual-Inertial navigation system(VINS) has become a popular navigation approach in the field of unmanned aerial vehicles(UAV) or robotics. While its performance under autonomous driving scenario is not satisfactory due to the fact that autonomous driving scenario is more challenging and dynamic than the UAV scenario. Thus, the Visual-Inertial navigation system will collapse occasionally and thus undermine the navigation result. In this work, we propose a adaptive mechanism that could switch between three modes, only VINs, only GNSS and VINS&GNSS fusion. When Visual-Inertial component breaks down, our algorithm could only rely on the GNSS signal until VINS recovers. Similarly, when GNSS signal is not very accurate, our system could only rely on the VINS-Mono. We demonstrate our algorithm under challenging scenarios such as night sight and high speed road and do both qualitative analysis and quantitative analysis.","PeriodicalId":119721,"journal":{"name":"2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Adaptive Sensor Fusion of Camera, GNSS and IMU for Autonomous Driving Navigation\",\"authors\":\"Weining Ren, Kun Jiang, Xinxin Chen, Tuopu Wen, Diange Yang\",\"doi\":\"10.1109/CVCI51460.2020.9338655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Visual-Inertial navigation system(VINS) has become a popular navigation approach in the field of unmanned aerial vehicles(UAV) or robotics. While its performance under autonomous driving scenario is not satisfactory due to the fact that autonomous driving scenario is more challenging and dynamic than the UAV scenario. Thus, the Visual-Inertial navigation system will collapse occasionally and thus undermine the navigation result. In this work, we propose a adaptive mechanism that could switch between three modes, only VINs, only GNSS and VINS&GNSS fusion. When Visual-Inertial component breaks down, our algorithm could only rely on the GNSS signal until VINS recovers. Similarly, when GNSS signal is not very accurate, our system could only rely on the VINS-Mono. We demonstrate our algorithm under challenging scenarios such as night sight and high speed road and do both qualitative analysis and quantitative analysis.\",\"PeriodicalId\":119721,\"journal\":{\"name\":\"2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVCI51460.2020.9338655\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVCI51460.2020.9338655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptive Sensor Fusion of Camera, GNSS and IMU for Autonomous Driving Navigation
The Visual-Inertial navigation system(VINS) has become a popular navigation approach in the field of unmanned aerial vehicles(UAV) or robotics. While its performance under autonomous driving scenario is not satisfactory due to the fact that autonomous driving scenario is more challenging and dynamic than the UAV scenario. Thus, the Visual-Inertial navigation system will collapse occasionally and thus undermine the navigation result. In this work, we propose a adaptive mechanism that could switch between three modes, only VINs, only GNSS and VINS&GNSS fusion. When Visual-Inertial component breaks down, our algorithm could only rely on the GNSS signal until VINS recovers. Similarly, when GNSS signal is not very accurate, our system could only rely on the VINS-Mono. We demonstrate our algorithm under challenging scenarios such as night sight and high speed road and do both qualitative analysis and quantitative analysis.