自动驾驶导航中相机、GNSS和IMU自适应传感器融合

Weining Ren, Kun Jiang, Xinxin Chen, Tuopu Wen, Diange Yang
{"title":"自动驾驶导航中相机、GNSS和IMU自适应传感器融合","authors":"Weining Ren, Kun Jiang, Xinxin Chen, Tuopu Wen, Diange Yang","doi":"10.1109/CVCI51460.2020.9338655","DOIUrl":null,"url":null,"abstract":"The Visual-Inertial navigation system(VINS) has become a popular navigation approach in the field of unmanned aerial vehicles(UAV) or robotics. While its performance under autonomous driving scenario is not satisfactory due to the fact that autonomous driving scenario is more challenging and dynamic than the UAV scenario. Thus, the Visual-Inertial navigation system will collapse occasionally and thus undermine the navigation result. In this work, we propose a adaptive mechanism that could switch between three modes, only VINs, only GNSS and VINS&GNSS fusion. When Visual-Inertial component breaks down, our algorithm could only rely on the GNSS signal until VINS recovers. Similarly, when GNSS signal is not very accurate, our system could only rely on the VINS-Mono. We demonstrate our algorithm under challenging scenarios such as night sight and high speed road and do both qualitative analysis and quantitative analysis.","PeriodicalId":119721,"journal":{"name":"2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Adaptive Sensor Fusion of Camera, GNSS and IMU for Autonomous Driving Navigation\",\"authors\":\"Weining Ren, Kun Jiang, Xinxin Chen, Tuopu Wen, Diange Yang\",\"doi\":\"10.1109/CVCI51460.2020.9338655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Visual-Inertial navigation system(VINS) has become a popular navigation approach in the field of unmanned aerial vehicles(UAV) or robotics. While its performance under autonomous driving scenario is not satisfactory due to the fact that autonomous driving scenario is more challenging and dynamic than the UAV scenario. Thus, the Visual-Inertial navigation system will collapse occasionally and thus undermine the navigation result. In this work, we propose a adaptive mechanism that could switch between three modes, only VINs, only GNSS and VINS&GNSS fusion. When Visual-Inertial component breaks down, our algorithm could only rely on the GNSS signal until VINS recovers. Similarly, when GNSS signal is not very accurate, our system could only rely on the VINS-Mono. We demonstrate our algorithm under challenging scenarios such as night sight and high speed road and do both qualitative analysis and quantitative analysis.\",\"PeriodicalId\":119721,\"journal\":{\"name\":\"2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVCI51460.2020.9338655\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVCI51460.2020.9338655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

视觉惯性导航系统(VINS)已成为无人驾驶飞行器(UAV)或机器人领域的一种流行的导航方法。但由于自动驾驶场景比无人机场景更具挑战性和动态性,其在自动驾驶场景下的性能并不令人满意。因此,视惯性导航系统偶尔会崩溃,从而影响导航效果。在这项工作中,我们提出了一种自适应机制,可以在三种模式之间切换,即仅VINs,仅GNSS和VINs &GNSS融合。当视惯性分量出现故障时,我们的算法只能依赖GNSS信号,直到VINS恢复。同样,当GNSS信号不是很精确的时候,我们的系统只能依靠vin - mono。我们在夜视和高速公路等具有挑战性的场景下演示了我们的算法,并进行了定性分析和定量分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Sensor Fusion of Camera, GNSS and IMU for Autonomous Driving Navigation
The Visual-Inertial navigation system(VINS) has become a popular navigation approach in the field of unmanned aerial vehicles(UAV) or robotics. While its performance under autonomous driving scenario is not satisfactory due to the fact that autonomous driving scenario is more challenging and dynamic than the UAV scenario. Thus, the Visual-Inertial navigation system will collapse occasionally and thus undermine the navigation result. In this work, we propose a adaptive mechanism that could switch between three modes, only VINs, only GNSS and VINS&GNSS fusion. When Visual-Inertial component breaks down, our algorithm could only rely on the GNSS signal until VINS recovers. Similarly, when GNSS signal is not very accurate, our system could only rely on the VINS-Mono. We demonstrate our algorithm under challenging scenarios such as night sight and high speed road and do both qualitative analysis and quantitative analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信