花生发育突变体的形态和生殖特性

M. M. A. Mondal, M. Bhuiyan
{"title":"花生发育突变体的形态和生殖特性","authors":"M. M. A. Mondal, M. Bhuiyan","doi":"10.14419/ijag.v8i1.30338","DOIUrl":null,"url":null,"abstract":"Twenty-eight established groundnut mutants and two check cultivars were studied during Kharif-I (March-June) season of 2017 and 2018 to find out their variability and distinct character(s) as identifying keys. All the mutant lines showed erect type sequential branching habits with two seeds in each pod although they had shown significant variability in all vegetative and reproductive structures. According to cluster analysis, 30 mutants/varieties clustered into three major groups at distance level 60 based on the morphological variability of 14 characters. The variability of 14 morphological characters in three principal components was explained by 98.12% of the total variation. The characters, 100-pod weight had the highest contribution followed by branch length, plant height and 100-kernel weight. Twenty-three mutant genotypes grouped into intermediate type of the extremes in any given identifying key characteristics. Only single genotype of the whole lot showed distinctively the longest primary branch and highest secondary branch number and small seed size (D1/24-29), highest primary branch number (M6/7-25), lowest primary branch number (Mut-2), highest leaflet length and light green leaf colour (Dhaka-1), presence of stem pigmentation and pod beak and highest number of seeds pod-1 (Zhingabadam), leaflet shape lanceolate (M6/54-20). In contrast, only two mutants of the lot showed two buds raceme-1 (M6/36-24 and M6/61-6), bolder pod and seed size and highly constricted pod (Mut-2 and Mut-3). The genotypes with the above distinguished characteristic featured for being ideal genetic markers and could be used in future breeding applications as well as aids in varietal identification.  ","PeriodicalId":424421,"journal":{"name":"International Journal of Advanced Geosciences","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Morphological and reproductive characterization of developed mutants in groundnut\",\"authors\":\"M. M. A. Mondal, M. Bhuiyan\",\"doi\":\"10.14419/ijag.v8i1.30338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Twenty-eight established groundnut mutants and two check cultivars were studied during Kharif-I (March-June) season of 2017 and 2018 to find out their variability and distinct character(s) as identifying keys. All the mutant lines showed erect type sequential branching habits with two seeds in each pod although they had shown significant variability in all vegetative and reproductive structures. According to cluster analysis, 30 mutants/varieties clustered into three major groups at distance level 60 based on the morphological variability of 14 characters. The variability of 14 morphological characters in three principal components was explained by 98.12% of the total variation. The characters, 100-pod weight had the highest contribution followed by branch length, plant height and 100-kernel weight. Twenty-three mutant genotypes grouped into intermediate type of the extremes in any given identifying key characteristics. Only single genotype of the whole lot showed distinctively the longest primary branch and highest secondary branch number and small seed size (D1/24-29), highest primary branch number (M6/7-25), lowest primary branch number (Mut-2), highest leaflet length and light green leaf colour (Dhaka-1), presence of stem pigmentation and pod beak and highest number of seeds pod-1 (Zhingabadam), leaflet shape lanceolate (M6/54-20). In contrast, only two mutants of the lot showed two buds raceme-1 (M6/36-24 and M6/61-6), bolder pod and seed size and highly constricted pod (Mut-2 and Mut-3). The genotypes with the above distinguished characteristic featured for being ideal genetic markers and could be used in future breeding applications as well as aids in varietal identification.  \",\"PeriodicalId\":424421,\"journal\":{\"name\":\"International Journal of Advanced Geosciences\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Geosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14419/ijag.v8i1.30338\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14419/ijag.v8i1.30338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在2017年和2018年哈里夫1季(3 - 6月)对28个花生建立突变体和2个对照品种进行了研究,以找出它们的变异和显著性特征作为识别关键。所有突变系均表现出直立型顺序分枝习性,每个荚果中有两个种子,但它们在所有营养和生殖结构上都表现出显著的变异。聚类分析表明,基于14个性状的形态变异,30个突变/品种在距离水平60上聚为3大类群。14个形态性状的3个主成分变异解释率为总变异的98.12%。各性状贡献最大的是百粒重,其次是枝长、株高和百粒重。23个突变基因型在任何给定的鉴定关键特征中被归类为极端的中间型。单基因型表现出一次枝最长、次枝数最多、种子小(D1/24-29)、一次枝数最多(m1 /7-25)、一次枝数最少(Mut-2)、小叶长度最多、叶色淡绿(Dhaka-1)、茎色素沉淀、荚果喙和种子数最多(pod-1)、小叶形状针针形(m1 /54-20)。相比之下,只有2个突变体具有2个芽总状花序1 (M6/36-24和M6/61-6)、较大的荚果和种子大小以及高度收缩的荚果(mut2和mut3)。具有上述显著特征的基因型是理想的遗传标记,可用于今后的育种应用和品种鉴定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Morphological and reproductive characterization of developed mutants in groundnut
Twenty-eight established groundnut mutants and two check cultivars were studied during Kharif-I (March-June) season of 2017 and 2018 to find out their variability and distinct character(s) as identifying keys. All the mutant lines showed erect type sequential branching habits with two seeds in each pod although they had shown significant variability in all vegetative and reproductive structures. According to cluster analysis, 30 mutants/varieties clustered into three major groups at distance level 60 based on the morphological variability of 14 characters. The variability of 14 morphological characters in three principal components was explained by 98.12% of the total variation. The characters, 100-pod weight had the highest contribution followed by branch length, plant height and 100-kernel weight. Twenty-three mutant genotypes grouped into intermediate type of the extremes in any given identifying key characteristics. Only single genotype of the whole lot showed distinctively the longest primary branch and highest secondary branch number and small seed size (D1/24-29), highest primary branch number (M6/7-25), lowest primary branch number (Mut-2), highest leaflet length and light green leaf colour (Dhaka-1), presence of stem pigmentation and pod beak and highest number of seeds pod-1 (Zhingabadam), leaflet shape lanceolate (M6/54-20). In contrast, only two mutants of the lot showed two buds raceme-1 (M6/36-24 and M6/61-6), bolder pod and seed size and highly constricted pod (Mut-2 and Mut-3). The genotypes with the above distinguished characteristic featured for being ideal genetic markers and could be used in future breeding applications as well as aids in varietal identification.  
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信