{"title":"数字序列全局函数域构造中生成矩阵的形状控制","authors":"Roswitha Hofer, Isabel Pirsic","doi":"10.1017/CBO9781139696456.011","DOIUrl":null,"url":null,"abstract":"Motivated by computational as well as theoretical considerations we show how the shape and density of the generating matrices of two optimal constructions of (t, s)and (u, e, s)-sequences (viz., the Xing-Niederreiter and Hofer-Niederreiter sequences) can be controlled by a careful choice of various parameters. We also present some experimental data to support our assertions and point out open problems. MSC2010: 11K31, 11K38.","PeriodicalId":352591,"journal":{"name":"Applied Algebra and Number Theory","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Controlling the shape of generating matrices in global function field constructions of digital sequences\",\"authors\":\"Roswitha Hofer, Isabel Pirsic\",\"doi\":\"10.1017/CBO9781139696456.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated by computational as well as theoretical considerations we show how the shape and density of the generating matrices of two optimal constructions of (t, s)and (u, e, s)-sequences (viz., the Xing-Niederreiter and Hofer-Niederreiter sequences) can be controlled by a careful choice of various parameters. We also present some experimental data to support our assertions and point out open problems. MSC2010: 11K31, 11K38.\",\"PeriodicalId\":352591,\"journal\":{\"name\":\"Applied Algebra and Number Theory\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Algebra and Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/CBO9781139696456.011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Algebra and Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/CBO9781139696456.011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
在计算和理论考虑的激励下,我们展示了(t, s)和(u, e, s)序列(即Xing-Niederreiter和Hofer-Niederreiter序列)的两种最优结构的生成矩阵的形状和密度如何通过仔细选择各种参数来控制。我们还提供了一些实验数据来支持我们的断言,并指出了存在的问题。中文信息学报,2010:11k31, 11k38。
Controlling the shape of generating matrices in global function field constructions of digital sequences
Motivated by computational as well as theoretical considerations we show how the shape and density of the generating matrices of two optimal constructions of (t, s)and (u, e, s)-sequences (viz., the Xing-Niederreiter and Hofer-Niederreiter sequences) can be controlled by a careful choice of various parameters. We also present some experimental data to support our assertions and point out open problems. MSC2010: 11K31, 11K38.