最佳支持图像匹配

Michael S. Lew, T. S. Huang
{"title":"最佳支持图像匹配","authors":"Michael S. Lew, T. S. Huang","doi":"10.1109/DSPWS.1996.555508","DOIUrl":null,"url":null,"abstract":"The information theoretic approach provides a foundation for determining new insights and solutions toward image modeling and analysis problems. The underlying principle is that a search through an image can be viewed as a reduction of the expected uncertainty in the classification of the image. Specifically, we propose using the Kullback (1959) relative information for the determination of the support which maximizes the feature class separation, which consequently should minimize the probability of misclassifications. The methods are applied to face detection and two view image matching using internationally available databases.","PeriodicalId":131323,"journal":{"name":"1996 IEEE Digital Signal Processing Workshop Proceedings","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Optimal supports for image matching\",\"authors\":\"Michael S. Lew, T. S. Huang\",\"doi\":\"10.1109/DSPWS.1996.555508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The information theoretic approach provides a foundation for determining new insights and solutions toward image modeling and analysis problems. The underlying principle is that a search through an image can be viewed as a reduction of the expected uncertainty in the classification of the image. Specifically, we propose using the Kullback (1959) relative information for the determination of the support which maximizes the feature class separation, which consequently should minimize the probability of misclassifications. The methods are applied to face detection and two view image matching using internationally available databases.\",\"PeriodicalId\":131323,\"journal\":{\"name\":\"1996 IEEE Digital Signal Processing Workshop Proceedings\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1996 IEEE Digital Signal Processing Workshop Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSPWS.1996.555508\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1996 IEEE Digital Signal Processing Workshop Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSPWS.1996.555508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

信息理论方法为确定图像建模和分析问题的新见解和解决方案提供了基础。其基本原理是,通过图像的搜索可以被视为图像分类中预期不确定性的减少。具体来说,我们建议使用Kullback(1959)相对信息来确定最大程度地实现特征类分离的支持度,从而最大限度地减少错误分类的概率。将该方法应用于国际通用数据库的人脸检测和二视图像匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal supports for image matching
The information theoretic approach provides a foundation for determining new insights and solutions toward image modeling and analysis problems. The underlying principle is that a search through an image can be viewed as a reduction of the expected uncertainty in the classification of the image. Specifically, we propose using the Kullback (1959) relative information for the determination of the support which maximizes the feature class separation, which consequently should minimize the probability of misclassifications. The methods are applied to face detection and two view image matching using internationally available databases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信