窄带功率优化波形的实验表征

T. Ikeuchi, Y. Kawahara, Joshua R. Smith
{"title":"窄带功率优化波形的实验表征","authors":"T. Ikeuchi, Y. Kawahara, Joshua R. Smith","doi":"10.1109/WPTC45513.2019.9055570","DOIUrl":null,"url":null,"abstract":"Low power devices driven by energy harvesting are limited in working range by transmit power restrictions. Power optimized waveforms (POWs) have been proposed as a way to achieve a longer working range without increasing average transmit power. In the ultra high frequency (UHF) band, bandwidth occupancy needs to be small enough to satisfy relevant regulations: thus the wideband POWs explored in some prior work may be less practical than narrowband POWs. This paper experimentally evaluates the performance of narrowband multi-sine based POWs, varying number of sines from 2 to 20 and occupied bandwidth of 10 kHz, 100 kHz, and 1 MHz-all narrowband from a regulatory perspective. Our key result is that additional sine waves improve voltage sensitivity, but not Power Conversion Efficiency. In our experiments, we observed the voltage sensitivity benefits of the multi-sine POWs to be most pronounced at a power level of -13 dBm; at signal levels significantly below (-30 dBm) or above (0 dBm) this level, their benefits diminish. Finally, we also observe that in a real system (the WISP 5.1, which includes a rectifier and DC-DC converter), voltage sensitivity is a much more complex function of waveform and signal power than in simpler idealized rectifiers. The sensitivity is a non-monotonic and complex function of the number of sines, occupied bandwidth, and signal strength.","PeriodicalId":148719,"journal":{"name":"2019 IEEE Wireless Power Transfer Conference (WPTC)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Experimental Characterization of Narrowband Power Optimized Waveforms\",\"authors\":\"T. Ikeuchi, Y. Kawahara, Joshua R. Smith\",\"doi\":\"10.1109/WPTC45513.2019.9055570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Low power devices driven by energy harvesting are limited in working range by transmit power restrictions. Power optimized waveforms (POWs) have been proposed as a way to achieve a longer working range without increasing average transmit power. In the ultra high frequency (UHF) band, bandwidth occupancy needs to be small enough to satisfy relevant regulations: thus the wideband POWs explored in some prior work may be less practical than narrowband POWs. This paper experimentally evaluates the performance of narrowband multi-sine based POWs, varying number of sines from 2 to 20 and occupied bandwidth of 10 kHz, 100 kHz, and 1 MHz-all narrowband from a regulatory perspective. Our key result is that additional sine waves improve voltage sensitivity, but not Power Conversion Efficiency. In our experiments, we observed the voltage sensitivity benefits of the multi-sine POWs to be most pronounced at a power level of -13 dBm; at signal levels significantly below (-30 dBm) or above (0 dBm) this level, their benefits diminish. Finally, we also observe that in a real system (the WISP 5.1, which includes a rectifier and DC-DC converter), voltage sensitivity is a much more complex function of waveform and signal power than in simpler idealized rectifiers. The sensitivity is a non-monotonic and complex function of the number of sines, occupied bandwidth, and signal strength.\",\"PeriodicalId\":148719,\"journal\":{\"name\":\"2019 IEEE Wireless Power Transfer Conference (WPTC)\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Wireless Power Transfer Conference (WPTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WPTC45513.2019.9055570\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Wireless Power Transfer Conference (WPTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WPTC45513.2019.9055570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

能量收集驱动的低功率器件受发射功率限制,工作范围受到限制。功率优化波形(pow)是在不增加平均发射功率的情况下实现更长的工作范围的一种方法。在超高频(UHF)频段,带宽占用需要足够小以满足相关规定,因此一些先前工作中探索的宽带pow可能不如窄带pow实用。本文实验评估了基于多正弦的窄带pow的性能,从2到20的正弦数变化,占用的带宽为10 kHz, 100 kHz和1 mhz -从监管的角度来看都是窄带的。我们的关键结果是,额外的正弦波提高了电压灵敏度,但没有提高功率转换效率。在我们的实验中,我们观察到在-13 dBm的功率水平下,多正弦pow的电压灵敏度优势最为明显;当信号水平明显低于(- 30dbm)或高于(0dbm)这个水平时,它们的优势就会减弱。最后,我们还观察到,在实际系统(WISP 5.1,其中包括整流器和DC-DC转换器)中,电压灵敏度是波形和信号功率的复杂函数,而不是简单的理想整流器。灵敏度是正弦数、占用带宽和信号强度的非单调复函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental Characterization of Narrowband Power Optimized Waveforms
Low power devices driven by energy harvesting are limited in working range by transmit power restrictions. Power optimized waveforms (POWs) have been proposed as a way to achieve a longer working range without increasing average transmit power. In the ultra high frequency (UHF) band, bandwidth occupancy needs to be small enough to satisfy relevant regulations: thus the wideband POWs explored in some prior work may be less practical than narrowband POWs. This paper experimentally evaluates the performance of narrowband multi-sine based POWs, varying number of sines from 2 to 20 and occupied bandwidth of 10 kHz, 100 kHz, and 1 MHz-all narrowband from a regulatory perspective. Our key result is that additional sine waves improve voltage sensitivity, but not Power Conversion Efficiency. In our experiments, we observed the voltage sensitivity benefits of the multi-sine POWs to be most pronounced at a power level of -13 dBm; at signal levels significantly below (-30 dBm) or above (0 dBm) this level, their benefits diminish. Finally, we also observe that in a real system (the WISP 5.1, which includes a rectifier and DC-DC converter), voltage sensitivity is a much more complex function of waveform and signal power than in simpler idealized rectifiers. The sensitivity is a non-monotonic and complex function of the number of sines, occupied bandwidth, and signal strength.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信