Nelson Francisco, Nuno M. M. Rodrigues, E. Silva, M. Carvalho, Sérgio Faria, V. Silva, M. Reis
{"title":"多尺度模式与灵活分割和字典训练的近似匹配","authors":"Nelson Francisco, Nuno M. M. Rodrigues, E. Silva, M. Carvalho, Sérgio Faria, V. Silva, M. Reis","doi":"10.14209/sbrt.2008.42762","DOIUrl":null,"url":null,"abstract":"In this paper we present a new segmentation method for the MMP (Multidimensional Multiscale Parser) algorithm, allied with a dictionary training procedure. These improvements allowed MMP to outperform state-of-the-art transform-based encoders like JPEG2000 and H.264/AVC, for both smooth and non-smooth images, at low to medium compression ratios. The new approach allowed MMP to exploit the images’ structure in a more effective way, increasing significantly its performance for smooth images. Additionally, the new techniques do not compromise the results achieved for non-smooth images, where MMP already outperformed transform-based algorithms. Keywords— Image coding, pattern matching, image segmentation, image processing","PeriodicalId":340055,"journal":{"name":"Anais do XXVI Simpósio Brasileiro de Telecomunicações","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Casamento Aproximado de Padrões Multiescala com Segmentação Flexível e Treino do Dicionário\",\"authors\":\"Nelson Francisco, Nuno M. M. Rodrigues, E. Silva, M. Carvalho, Sérgio Faria, V. Silva, M. Reis\",\"doi\":\"10.14209/sbrt.2008.42762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a new segmentation method for the MMP (Multidimensional Multiscale Parser) algorithm, allied with a dictionary training procedure. These improvements allowed MMP to outperform state-of-the-art transform-based encoders like JPEG2000 and H.264/AVC, for both smooth and non-smooth images, at low to medium compression ratios. The new approach allowed MMP to exploit the images’ structure in a more effective way, increasing significantly its performance for smooth images. Additionally, the new techniques do not compromise the results achieved for non-smooth images, where MMP already outperformed transform-based algorithms. Keywords— Image coding, pattern matching, image segmentation, image processing\",\"PeriodicalId\":340055,\"journal\":{\"name\":\"Anais do XXVI Simpósio Brasileiro de Telecomunicações\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XXVI Simpósio Brasileiro de Telecomunicações\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14209/sbrt.2008.42762\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XXVI Simpósio Brasileiro de Telecomunicações","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14209/sbrt.2008.42762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Casamento Aproximado de Padrões Multiescala com Segmentação Flexível e Treino do Dicionário
In this paper we present a new segmentation method for the MMP (Multidimensional Multiscale Parser) algorithm, allied with a dictionary training procedure. These improvements allowed MMP to outperform state-of-the-art transform-based encoders like JPEG2000 and H.264/AVC, for both smooth and non-smooth images, at low to medium compression ratios. The new approach allowed MMP to exploit the images’ structure in a more effective way, increasing significantly its performance for smooth images. Additionally, the new techniques do not compromise the results achieved for non-smooth images, where MMP already outperformed transform-based algorithms. Keywords— Image coding, pattern matching, image segmentation, image processing