使用多类支持向量机学习包

F. Nikolay, M. Pesavento
{"title":"使用多类支持向量机学习包","authors":"F. Nikolay, M. Pesavento","doi":"10.1109/SSP.2018.8450754","DOIUrl":null,"url":null,"abstract":"In this paper we consider the problem of learning the geneticinteraction- network that is underlying the measured double knockout (DK) data. Based on the biological system model of [3], we propose a multiclass-SVM approach that yields a high prediction accuracy of the genetic-interaction-network underlying the DK data while being able to estimate the network topology for large sets of genes. We demonstrate the performance of our proposed multiclass-SVM approach by synthetic data simulations where we use the recently proposed GENIE method of [3] as a benchmark.","PeriodicalId":330528,"journal":{"name":"2018 IEEE Statistical Signal Processing Workshop (SSP)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning Dags using Multiclass Support Vector Machines\",\"authors\":\"F. Nikolay, M. Pesavento\",\"doi\":\"10.1109/SSP.2018.8450754\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we consider the problem of learning the geneticinteraction- network that is underlying the measured double knockout (DK) data. Based on the biological system model of [3], we propose a multiclass-SVM approach that yields a high prediction accuracy of the genetic-interaction-network underlying the DK data while being able to estimate the network topology for large sets of genes. We demonstrate the performance of our proposed multiclass-SVM approach by synthetic data simulations where we use the recently proposed GENIE method of [3] as a benchmark.\",\"PeriodicalId\":330528,\"journal\":{\"name\":\"2018 IEEE Statistical Signal Processing Workshop (SSP)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Statistical Signal Processing Workshop (SSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSP.2018.8450754\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP.2018.8450754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑了遗传相互作用网络的学习问题,该网络是测量双敲除(DK)数据的基础。基于[3]的生物系统模型,我们提出了一种多类支持向量机方法,该方法对DK数据背后的遗传相互作用网络具有很高的预测精度,同时能够估计大型基因集的网络拓扑。我们通过综合数据模拟证明了我们提出的多类支持向量机方法的性能,其中我们使用最近提出的GENIE方法[3]作为基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Dags using Multiclass Support Vector Machines
In this paper we consider the problem of learning the geneticinteraction- network that is underlying the measured double knockout (DK) data. Based on the biological system model of [3], we propose a multiclass-SVM approach that yields a high prediction accuracy of the genetic-interaction-network underlying the DK data while being able to estimate the network topology for large sets of genes. We demonstrate the performance of our proposed multiclass-SVM approach by synthetic data simulations where we use the recently proposed GENIE method of [3] as a benchmark.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信