基于深度语境化词表示的无监督句子相似度增强方法

Tharindu Ranasinghe, Constantin Orasan, R. Mitkov
{"title":"基于深度语境化词表示的无监督句子相似度增强方法","authors":"Tharindu Ranasinghe, Constantin Orasan, R. Mitkov","doi":"10.26615/978-954-452-056-4_115","DOIUrl":null,"url":null,"abstract":"Calculating Semantic Textual Similarity (STS) plays a significant role in many applications such as question answering, document summarisation, information retrieval and information extraction. All modern state of the art STS methods rely on word embeddings one way or another. The recently introduced contextualised word embeddings have proved more effective than standard word embeddings in many natural language processing tasks. This paper evaluates the impact of several contextualised word embeddings on unsupervised STS methods and compares it with the existing supervised/unsupervised STS methods for different datasets in different languages and different domains","PeriodicalId":284493,"journal":{"name":"Recent Advances in Natural Language Processing","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Enhancing Unsupervised Sentence Similarity Methods with Deep Contextualised Word Representations\",\"authors\":\"Tharindu Ranasinghe, Constantin Orasan, R. Mitkov\",\"doi\":\"10.26615/978-954-452-056-4_115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Calculating Semantic Textual Similarity (STS) plays a significant role in many applications such as question answering, document summarisation, information retrieval and information extraction. All modern state of the art STS methods rely on word embeddings one way or another. The recently introduced contextualised word embeddings have proved more effective than standard word embeddings in many natural language processing tasks. This paper evaluates the impact of several contextualised word embeddings on unsupervised STS methods and compares it with the existing supervised/unsupervised STS methods for different datasets in different languages and different domains\",\"PeriodicalId\":284493,\"journal\":{\"name\":\"Recent Advances in Natural Language Processing\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent Advances in Natural Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26615/978-954-452-056-4_115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Advances in Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26615/978-954-452-056-4_115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

语义文本相似度的计算在问答、文档摘要、信息检索和信息抽取等应用中起着重要的作用。所有现代最先进的STS方法都以这样或那样的方式依赖于词嵌入。在许多自然语言处理任务中,最近引入的语境化词嵌入被证明比标准词嵌入更有效。本文评估了几种情境化词嵌入对无监督STS方法的影响,并将其与现有的针对不同语言和不同领域的不同数据集的有监督/无监督STS方法进行了比较
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing Unsupervised Sentence Similarity Methods with Deep Contextualised Word Representations
Calculating Semantic Textual Similarity (STS) plays a significant role in many applications such as question answering, document summarisation, information retrieval and information extraction. All modern state of the art STS methods rely on word embeddings one way or another. The recently introduced contextualised word embeddings have proved more effective than standard word embeddings in many natural language processing tasks. This paper evaluates the impact of several contextualised word embeddings on unsupervised STS methods and compares it with the existing supervised/unsupervised STS methods for different datasets in different languages and different domains
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信