TCP增强的流量优化和数据压缩实验分析

N. Rao, S. Poole, W. Wing, S. Carter
{"title":"TCP增强的流量优化和数据压缩实验分析","authors":"N. Rao, S. Poole, W. Wing, S. Carter","doi":"10.1109/INFCOMW.2009.5072141","DOIUrl":null,"url":null,"abstract":"Flow optimization and data compression methods promise to improve TCP performance, and edge devices that implement them to transparently improve wide-area network performance are currently being developed. We present an experimental study of TCP throughput performance of such Cisco devices using 1Gbps connections of thousands of miles over UltraScience Net. Based on iperf measurements, we have the following observations: (i) multi-fold throughput improvements are achieved over the buffer-tuned TCP both for single and most multiple streams; and (ii) high throughputs are maintained over connection lengths of thousands of miles. For file transfers using iperf, our experiments included files with repeated bytes and uniformly randomly generated bytes, and supernova simulation data in hdf format: (i) highest and lowest throughputs are achieved for hdf and random data files, respectively; (ii) most throughputs were maximized by 5-10 parallel TCP streams; and (iii) pre-compression of files using gzip did not have a significant effect on transport performance.","PeriodicalId":252414,"journal":{"name":"IEEE INFOCOM Workshops 2009","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Experimental Analysis of Flow Optimization and Data Compression for TCP Enhancement\",\"authors\":\"N. Rao, S. Poole, W. Wing, S. Carter\",\"doi\":\"10.1109/INFCOMW.2009.5072141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Flow optimization and data compression methods promise to improve TCP performance, and edge devices that implement them to transparently improve wide-area network performance are currently being developed. We present an experimental study of TCP throughput performance of such Cisco devices using 1Gbps connections of thousands of miles over UltraScience Net. Based on iperf measurements, we have the following observations: (i) multi-fold throughput improvements are achieved over the buffer-tuned TCP both for single and most multiple streams; and (ii) high throughputs are maintained over connection lengths of thousands of miles. For file transfers using iperf, our experiments included files with repeated bytes and uniformly randomly generated bytes, and supernova simulation data in hdf format: (i) highest and lowest throughputs are achieved for hdf and random data files, respectively; (ii) most throughputs were maximized by 5-10 parallel TCP streams; and (iii) pre-compression of files using gzip did not have a significant effect on transport performance.\",\"PeriodicalId\":252414,\"journal\":{\"name\":\"IEEE INFOCOM Workshops 2009\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE INFOCOM Workshops 2009\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFCOMW.2009.5072141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE INFOCOM Workshops 2009","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFCOMW.2009.5072141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

流量优化和数据压缩方法有望提高TCP性能,目前正在开发实现这些方法以透明地提高广域网性能的边缘设备。我们提出了一项实验研究的TCP吞吐量性能的思科设备使用1Gbps连接数千英里的UltraScience网络。基于iperf测量,我们有以下观察:(i)对于单个和大多数多个流,通过缓冲调优的TCP实现了多倍的吞吐量改进;(ii)在数千英里的连接长度上保持高吞吐量。对于使用iperf的文件传输,我们的实验包括重复字节和均匀随机生成字节的文件,以及hdf格式的超新星模拟数据:(i) hdf和随机数据文件的吞吐量分别达到最高和最低;(ii) 5-10个并行TCP流最大限度地提高了吞吐量;(iii)使用gzip预压缩文件对传输性能没有显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental Analysis of Flow Optimization and Data Compression for TCP Enhancement
Flow optimization and data compression methods promise to improve TCP performance, and edge devices that implement them to transparently improve wide-area network performance are currently being developed. We present an experimental study of TCP throughput performance of such Cisco devices using 1Gbps connections of thousands of miles over UltraScience Net. Based on iperf measurements, we have the following observations: (i) multi-fold throughput improvements are achieved over the buffer-tuned TCP both for single and most multiple streams; and (ii) high throughputs are maintained over connection lengths of thousands of miles. For file transfers using iperf, our experiments included files with repeated bytes and uniformly randomly generated bytes, and supernova simulation data in hdf format: (i) highest and lowest throughputs are achieved for hdf and random data files, respectively; (ii) most throughputs were maximized by 5-10 parallel TCP streams; and (iii) pre-compression of files using gzip did not have a significant effect on transport performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信