{"title":"权值为3,最小距离为4的三元常数组合码的构造","authors":"M. Svanstrom","doi":"10.1109/ISIT.2000.866435","DOIUrl":null,"url":null,"abstract":"We consider the problem of finding the maximal size A/sub 3/(d,w/sub 0/,w/sub 1/,w/sub 2/) of a ternary constant-composition code. We describe a construction of ternary constant-composition codes that proves A/sub 3/(4,4m+1,2,1)=(m+1)(4m+2) and A/sub 3/(4, 4m-1,2,1)=m(4m+2).","PeriodicalId":108752,"journal":{"name":"2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A construction of ternary constant-composition codes with weight three and minimum distance four\",\"authors\":\"M. Svanstrom\",\"doi\":\"10.1109/ISIT.2000.866435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of finding the maximal size A/sub 3/(d,w/sub 0/,w/sub 1/,w/sub 2/) of a ternary constant-composition code. We describe a construction of ternary constant-composition codes that proves A/sub 3/(4,4m+1,2,1)=(m+1)(4m+2) and A/sub 3/(4, 4m-1,2,1)=m(4m+2).\",\"PeriodicalId\":108752,\"journal\":{\"name\":\"2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2000.866435\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2000.866435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A construction of ternary constant-composition codes with weight three and minimum distance four
We consider the problem of finding the maximal size A/sub 3/(d,w/sub 0/,w/sub 1/,w/sub 2/) of a ternary constant-composition code. We describe a construction of ternary constant-composition codes that proves A/sub 3/(4,4m+1,2,1)=(m+1)(4m+2) and A/sub 3/(4, 4m-1,2,1)=m(4m+2).