基于PMU数据的励磁系统在线参数辨识

T. Bi, A. Xue, Guoyi Xu, Xiaolong Guo, Fei Ge, Zhengfeng Wang
{"title":"基于PMU数据的励磁系统在线参数辨识","authors":"T. Bi, A. Xue, Guoyi Xu, Xiaolong Guo, Fei Ge, Zhengfeng Wang","doi":"10.1109/CRIS.2009.5071494","DOIUrl":null,"url":null,"abstract":"Parameter identification of excitation systems is of great importance for power system analysis, operation and control. In this paper, on-line parameter identification with PMU data is formulated as an optimization problem, which minimizes the exciter voltage error during a certain time. The errors are the differences between measured exciter voltage (field data) and simulated exciter voltage using identified parameters. The optimization problem is nonlinearity as it involves integrator and then solved by genetic algorithm (GA). Furthermore, to ensure the creditability of the solutions obtained with GA, the ordinal GA, which is a modification of GA with the philosophy of ordinal optimization, is applied. Case studies in Anhui power grid show the effectiveness of the proposed approach.","PeriodicalId":175538,"journal":{"name":"2009 Fourth International Conference on Critical Infrastructures","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"On-line parameter identification for excitation system based on PMU data\",\"authors\":\"T. Bi, A. Xue, Guoyi Xu, Xiaolong Guo, Fei Ge, Zhengfeng Wang\",\"doi\":\"10.1109/CRIS.2009.5071494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Parameter identification of excitation systems is of great importance for power system analysis, operation and control. In this paper, on-line parameter identification with PMU data is formulated as an optimization problem, which minimizes the exciter voltage error during a certain time. The errors are the differences between measured exciter voltage (field data) and simulated exciter voltage using identified parameters. The optimization problem is nonlinearity as it involves integrator and then solved by genetic algorithm (GA). Furthermore, to ensure the creditability of the solutions obtained with GA, the ordinal GA, which is a modification of GA with the philosophy of ordinal optimization, is applied. Case studies in Anhui power grid show the effectiveness of the proposed approach.\",\"PeriodicalId\":175538,\"journal\":{\"name\":\"2009 Fourth International Conference on Critical Infrastructures\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Fourth International Conference on Critical Infrastructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CRIS.2009.5071494\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Fourth International Conference on Critical Infrastructures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRIS.2009.5071494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

励磁系统的参数辨识对电力系统的分析、运行和控制具有重要意义。本文将利用PMU数据进行在线参数辨识的问题表述为一个优化问题,其目的是在一定时间内使励磁器电压误差最小。误差是测量的励磁电压(现场数据)与使用识别参数模拟的励磁电压之间的差异。优化问题是非线性的,因为它涉及积分器,然后用遗传算法求解。此外,为了保证遗传算法解的可信性,采用了具有有序优化思想的有序遗传算法,即对遗传算法的改进。安徽电网的实例分析表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On-line parameter identification for excitation system based on PMU data
Parameter identification of excitation systems is of great importance for power system analysis, operation and control. In this paper, on-line parameter identification with PMU data is formulated as an optimization problem, which minimizes the exciter voltage error during a certain time. The errors are the differences between measured exciter voltage (field data) and simulated exciter voltage using identified parameters. The optimization problem is nonlinearity as it involves integrator and then solved by genetic algorithm (GA). Furthermore, to ensure the creditability of the solutions obtained with GA, the ordinal GA, which is a modification of GA with the philosophy of ordinal optimization, is applied. Case studies in Anhui power grid show the effectiveness of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信