心脏瓣膜假体功能自动化设计的概念

P. Onishchenko, K. Klyshnikov, M. Rezvova, E. Ovcharenko
{"title":"心脏瓣膜假体功能自动化设计的概念","authors":"P. Onishchenko, K. Klyshnikov, M. Rezvova, E. Ovcharenko","doi":"10.17537/icmbb20.16","DOIUrl":null,"url":null,"abstract":"Aim. To develop an algorithm for the automated functional design of the heart valve leaflet apparatus.Methods. The geometry of the aortic valve leaflet was designed in the Matlab programming environment (MathWorks, Massachusetts, USA). Numerical modeling of the opening process was performed using Abaqus/CAE (Dassault Systemes, France).Results. We developed an algorithm, with the help of which a set of models of the leaflet apparatus was designed. 8 models were subjected to numerical modeling of the stress-strain state. The locking pressure simulation has shown that the smallest von Mises stress value was recorded for a sample with a larger surface area of the leaflet belly and it equals 0.422 MPa. The results obtained show that the value of the radius of curvature significantly affects the behavior of the entire valve, which leads to the conclusion that it is necessary to carefully select the design of the valve apparatus for its correct functioning.Conclusion. The study provides the primary confirmation that the concept of the algorithm is efficient for the automated functional design of the aortic heart valve leaflet apparatus. ","PeriodicalId":168323,"journal":{"name":"Proceedings of the International Conference \"Mathematical Biology and Bioinformatics\"","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Concept of Automated Functional Design of Heart Valve Prostheses\",\"authors\":\"P. Onishchenko, K. Klyshnikov, M. Rezvova, E. Ovcharenko\",\"doi\":\"10.17537/icmbb20.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aim. To develop an algorithm for the automated functional design of the heart valve leaflet apparatus.Methods. The geometry of the aortic valve leaflet was designed in the Matlab programming environment (MathWorks, Massachusetts, USA). Numerical modeling of the opening process was performed using Abaqus/CAE (Dassault Systemes, France).Results. We developed an algorithm, with the help of which a set of models of the leaflet apparatus was designed. 8 models were subjected to numerical modeling of the stress-strain state. The locking pressure simulation has shown that the smallest von Mises stress value was recorded for a sample with a larger surface area of the leaflet belly and it equals 0.422 MPa. The results obtained show that the value of the radius of curvature significantly affects the behavior of the entire valve, which leads to the conclusion that it is necessary to carefully select the design of the valve apparatus for its correct functioning.Conclusion. The study provides the primary confirmation that the concept of the algorithm is efficient for the automated functional design of the aortic heart valve leaflet apparatus. \",\"PeriodicalId\":168323,\"journal\":{\"name\":\"Proceedings of the International Conference \\\"Mathematical Biology and Bioinformatics\\\"\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Conference \\\"Mathematical Biology and Bioinformatics\\\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17537/icmbb20.16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference \"Mathematical Biology and Bioinformatics\"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17537/icmbb20.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

的目标。目的:研究心脏瓣膜小叶仪功能自动设计的算法。在Matlab编程环境(MathWorks, Massachusetts, USA)中设计主动脉瓣小叶的几何形状。利用Abaqus/CAE软件(达索系统,法国)对开孔过程进行了数值模拟。我们开发了一种算法,并利用该算法设计了一套小叶装置的模型。对8个模型进行了应力-应变状态的数值模拟。锁紧压力模拟结果表明,小叶腹表面积越大,von Mises应力值最小,为0.422 MPa。结果表明,曲率半径的取值对整个阀门的性能有显著影响,因此,为了使阀门正确工作,必须仔细选择阀门装置的设计。该研究初步证实了该算法的概念对于主动脉瓣小叶装置的自动化功能设计是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Concept of Automated Functional Design of Heart Valve Prostheses
Aim. To develop an algorithm for the automated functional design of the heart valve leaflet apparatus.Methods. The geometry of the aortic valve leaflet was designed in the Matlab programming environment (MathWorks, Massachusetts, USA). Numerical modeling of the opening process was performed using Abaqus/CAE (Dassault Systemes, France).Results. We developed an algorithm, with the help of which a set of models of the leaflet apparatus was designed. 8 models were subjected to numerical modeling of the stress-strain state. The locking pressure simulation has shown that the smallest von Mises stress value was recorded for a sample with a larger surface area of the leaflet belly and it equals 0.422 MPa. The results obtained show that the value of the radius of curvature significantly affects the behavior of the entire valve, which leads to the conclusion that it is necessary to carefully select the design of the valve apparatus for its correct functioning.Conclusion. The study provides the primary confirmation that the concept of the algorithm is efficient for the automated functional design of the aortic heart valve leaflet apparatus. 
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信