基于共现统计的语料库词干提取算法

Jiaul H. Paik, Dipasree Pal, S. Parui
{"title":"基于共现统计的语料库词干提取算法","authors":"Jiaul H. Paik, Dipasree Pal, S. Parui","doi":"10.1145/2009916.2010031","DOIUrl":null,"url":null,"abstract":"We present a stemming algorithm for text retrieval. The algorithm uses the statistics collected on the basis of certain corpus analysis based on the co-occurrence between two word variants. We use a very simple co-occurrence measure that reflects how often a pair of word variants occurs in a document as well as in the whole corpus. A graph is formed where the word variants are the nodes and two word variants form an edge if they co-occur. On the basis of the co-occurrence measure, a certain edge strength is defined for each of the edges. Finally, on the basis of the edge strengths, we propose a partition algorithm that groups the word variants based on their strongest neighbors, that is, the neighbors with largest strengths. Our stemming algorithm has two static parameters and does not use any other information except the co-occurrence statistics from the corpus. The experiments on TREC, CLEF and FIRE data consisting of four European and two Asian languages show a significant improvement over no-stem strategy on all the languages. Also, the proposed algorithm significantly outperforms a number of strong stemmers including the rule-based ones on a number of languages. For highly inflectional languages, a relative improvement of about 50% is obtained compared to un-normalized words and a relative improvement ranging from 5% to 16% is obtained compared to the rule based stemmer for the concerned language.","PeriodicalId":356580,"journal":{"name":"Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":"{\"title\":\"A novel corpus-based stemming algorithm using co-occurrence statistics\",\"authors\":\"Jiaul H. Paik, Dipasree Pal, S. Parui\",\"doi\":\"10.1145/2009916.2010031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a stemming algorithm for text retrieval. The algorithm uses the statistics collected on the basis of certain corpus analysis based on the co-occurrence between two word variants. We use a very simple co-occurrence measure that reflects how often a pair of word variants occurs in a document as well as in the whole corpus. A graph is formed where the word variants are the nodes and two word variants form an edge if they co-occur. On the basis of the co-occurrence measure, a certain edge strength is defined for each of the edges. Finally, on the basis of the edge strengths, we propose a partition algorithm that groups the word variants based on their strongest neighbors, that is, the neighbors with largest strengths. Our stemming algorithm has two static parameters and does not use any other information except the co-occurrence statistics from the corpus. The experiments on TREC, CLEF and FIRE data consisting of four European and two Asian languages show a significant improvement over no-stem strategy on all the languages. Also, the proposed algorithm significantly outperforms a number of strong stemmers including the rule-based ones on a number of languages. For highly inflectional languages, a relative improvement of about 50% is obtained compared to un-normalized words and a relative improvement ranging from 5% to 16% is obtained compared to the rule based stemmer for the concerned language.\",\"PeriodicalId\":356580,\"journal\":{\"name\":\"Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2009916.2010031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2009916.2010031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

摘要

提出了一种用于文本检索的词干提取算法。该算法利用基于两个词变体共现的语料库分析所收集的统计数据。我们使用一个非常简单的共现度量来反映一对单词变体在文档和整个语料库中出现的频率。形成一个图,其中单词变体是节点,如果两个单词变体同时出现,则形成一条边。在共现度量的基础上,为每条边定义一定的边强度。最后,在边缘强度的基础上,我们提出了一种基于最强邻居(即强度最大的邻居)对词变体进行分组的划分算法。我们的词干提取算法有两个静态参数,除了语料库中的共现统计外,不使用任何其他信息。在四种欧洲语言和两种亚洲语言的TREC、CLEF和FIRE数据上进行的实验表明,该策略在所有语言上都比无干策略有显著改善。此外,所提出的算法显著优于许多强大的系统,包括许多语言的基于规则的系统。对于高度屈折的语言,与非规范化单词相比,获得了约50%的相对改进,与相关语言的基于规则的词干相比,获得了5%至16%的相对改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel corpus-based stemming algorithm using co-occurrence statistics
We present a stemming algorithm for text retrieval. The algorithm uses the statistics collected on the basis of certain corpus analysis based on the co-occurrence between two word variants. We use a very simple co-occurrence measure that reflects how often a pair of word variants occurs in a document as well as in the whole corpus. A graph is formed where the word variants are the nodes and two word variants form an edge if they co-occur. On the basis of the co-occurrence measure, a certain edge strength is defined for each of the edges. Finally, on the basis of the edge strengths, we propose a partition algorithm that groups the word variants based on their strongest neighbors, that is, the neighbors with largest strengths. Our stemming algorithm has two static parameters and does not use any other information except the co-occurrence statistics from the corpus. The experiments on TREC, CLEF and FIRE data consisting of four European and two Asian languages show a significant improvement over no-stem strategy on all the languages. Also, the proposed algorithm significantly outperforms a number of strong stemmers including the rule-based ones on a number of languages. For highly inflectional languages, a relative improvement of about 50% is obtained compared to un-normalized words and a relative improvement ranging from 5% to 16% is obtained compared to the rule based stemmer for the concerned language.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信