基于仿生的无线传感器网络拥塞控制方案

Muhammad Royyan, Muhammad Rusyadi Ramli, Jae-Min Lee, Dong-Seong Kim
{"title":"基于仿生的无线传感器网络拥塞控制方案","authors":"Muhammad Royyan, Muhammad Rusyadi Ramli, Jae-Min Lee, Dong-Seong Kim","doi":"10.1109/WFCS.2018.8402366","DOIUrl":null,"url":null,"abstract":"Congestion in a network is determined by the resource constraints and the number of deployed sensor nodes. Congestion can significantly degrade the quality of services (QoS) in wireless sensor networks (WSNs) regarding throughput and end-to-end delay. In this paper, a hybrid bio-inspired algorithm is proposed for congestion control in large-scale WSNs. First, a competitive Lotka-Volterra (C-LV) model to avoid congestion is employed, while fairness among sensor nodes is maintained. Second, particles swarm optimization (PSO) is employed to enhance C-LV by optimizing the parameter for minimizing end-to-end delay. PSO makes this scheme adaptive to change. Simulation results verify that the proposed scheme improves the QoS in WSNs.","PeriodicalId":350991,"journal":{"name":"2018 14th IEEE International Workshop on Factory Communication Systems (WFCS)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Bio-inspired scheme for congestion control in wireless sensor networks\",\"authors\":\"Muhammad Royyan, Muhammad Rusyadi Ramli, Jae-Min Lee, Dong-Seong Kim\",\"doi\":\"10.1109/WFCS.2018.8402366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Congestion in a network is determined by the resource constraints and the number of deployed sensor nodes. Congestion can significantly degrade the quality of services (QoS) in wireless sensor networks (WSNs) regarding throughput and end-to-end delay. In this paper, a hybrid bio-inspired algorithm is proposed for congestion control in large-scale WSNs. First, a competitive Lotka-Volterra (C-LV) model to avoid congestion is employed, while fairness among sensor nodes is maintained. Second, particles swarm optimization (PSO) is employed to enhance C-LV by optimizing the parameter for minimizing end-to-end delay. PSO makes this scheme adaptive to change. Simulation results verify that the proposed scheme improves the QoS in WSNs.\",\"PeriodicalId\":350991,\"journal\":{\"name\":\"2018 14th IEEE International Workshop on Factory Communication Systems (WFCS)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 14th IEEE International Workshop on Factory Communication Systems (WFCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WFCS.2018.8402366\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 14th IEEE International Workshop on Factory Communication Systems (WFCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WFCS.2018.8402366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

网络中的拥塞是由资源约束和部署的传感器节点数量决定的。拥塞会显著降低无线传感器网络(wsn)中吞吐量和端到端延迟的服务质量(QoS)。针对大规模无线传感器网络中的拥塞控制问题,提出了一种混合仿生算法。首先,采用竞争的Lotka-Volterra (C-LV)模型来避免拥塞,同时保持传感器节点之间的公平性;其次,采用粒子群优化(PSO)算法,通过优化参数使端到端延迟最小化来增强C-LV。粒子群算法使该方案能够适应变化。仿真结果表明,该方案提高了无线传感器网络的服务质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bio-inspired scheme for congestion control in wireless sensor networks
Congestion in a network is determined by the resource constraints and the number of deployed sensor nodes. Congestion can significantly degrade the quality of services (QoS) in wireless sensor networks (WSNs) regarding throughput and end-to-end delay. In this paper, a hybrid bio-inspired algorithm is proposed for congestion control in large-scale WSNs. First, a competitive Lotka-Volterra (C-LV) model to avoid congestion is employed, while fairness among sensor nodes is maintained. Second, particles swarm optimization (PSO) is employed to enhance C-LV by optimizing the parameter for minimizing end-to-end delay. PSO makes this scheme adaptive to change. Simulation results verify that the proposed scheme improves the QoS in WSNs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信