基于cad的有理函数极限计算方法比较

A. Strzebonski
{"title":"基于cad的有理函数极限计算方法比较","authors":"A. Strzebonski","doi":"10.1145/3208976.3208982","DOIUrl":null,"url":null,"abstract":"We present five methods for computation of limits of real multivariate rational functions. The methods do not require any assumptions about the rational function and compute the lower limit and the upper limit. All methods are based on the cylindrical algebraic decomposition (CAD) algorithm, but use different formulations of the problem. We give an empirical comparison of the methods on a large set of examples.","PeriodicalId":105762,"journal":{"name":"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Comparison of CAD-based Methods for Computation of Rational Function Limits\",\"authors\":\"A. Strzebonski\",\"doi\":\"10.1145/3208976.3208982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present five methods for computation of limits of real multivariate rational functions. The methods do not require any assumptions about the rational function and compute the lower limit and the upper limit. All methods are based on the cylindrical algebraic decomposition (CAD) algorithm, but use different formulations of the problem. We give an empirical comparison of the methods on a large set of examples.\",\"PeriodicalId\":105762,\"journal\":{\"name\":\"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3208976.3208982\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3208976.3208982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

给出了实多元有理函数极限的五种计算方法。该方法不需要对有理函数作任何假设,只需计算下限和上限。所有的方法都是基于圆柱代数分解(CAD)算法,但使用不同的问题的表述。我们在大量实例上对这些方法进行了实证比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of CAD-based Methods for Computation of Rational Function Limits
We present five methods for computation of limits of real multivariate rational functions. The methods do not require any assumptions about the rational function and compute the lower limit and the upper limit. All methods are based on the cylindrical algebraic decomposition (CAD) algorithm, but use different formulations of the problem. We give an empirical comparison of the methods on a large set of examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信