基于扩散张量核的脑DW-MR图像各向异性滤波

Alonso Ramírez-Manzanares, Jonathan Rafael-Patino, M. Ashtari
{"title":"基于扩散张量核的脑DW-MR图像各向异性滤波","authors":"Alonso Ramírez-Manzanares, Jonathan Rafael-Patino, M. Ashtari","doi":"10.1109/CERMA.2010.113","DOIUrl":null,"url":null,"abstract":"Diffusion Weighted Magnetic Resonance Imaging is widely used to study the structure of the fiber pathways of brain white matter. Though, the recovered axon orientations could be prone to error because of the low signal to noise ratio. Spatial regularization can improve the estimations but it must be done carefully such that real information is not removed and false orientations are not introduced. In this work we investigate the advantages to apply an anisotropic filtering based on single and multiple axon bundle orientation kernels. To this aim, we compute local diffusion kernels based on Diffusion Tensor and multi Diffusion Tensor models. We show the benefits of our approach on three different types of DW-MRI Data: synthetic, in vivo human data, and acquired from a diffusion phantom.","PeriodicalId":119218,"journal":{"name":"2010 IEEE Electronics, Robotics and Automotive Mechanics Conference","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single and Multi Diffusion-Tensor Based Kernels for Anisotropic Filtering of Brain DW-MR Images\",\"authors\":\"Alonso Ramírez-Manzanares, Jonathan Rafael-Patino, M. Ashtari\",\"doi\":\"10.1109/CERMA.2010.113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diffusion Weighted Magnetic Resonance Imaging is widely used to study the structure of the fiber pathways of brain white matter. Though, the recovered axon orientations could be prone to error because of the low signal to noise ratio. Spatial regularization can improve the estimations but it must be done carefully such that real information is not removed and false orientations are not introduced. In this work we investigate the advantages to apply an anisotropic filtering based on single and multiple axon bundle orientation kernels. To this aim, we compute local diffusion kernels based on Diffusion Tensor and multi Diffusion Tensor models. We show the benefits of our approach on three different types of DW-MRI Data: synthetic, in vivo human data, and acquired from a diffusion phantom.\",\"PeriodicalId\":119218,\"journal\":{\"name\":\"2010 IEEE Electronics, Robotics and Automotive Mechanics Conference\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Electronics, Robotics and Automotive Mechanics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CERMA.2010.113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Electronics, Robotics and Automotive Mechanics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CERMA.2010.113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

磁共振弥散加权成像被广泛用于研究脑白质纤维通路的结构。然而,由于低信噪比,恢复的轴突方向容易出现误差。空间正则化可以改善估计,但必须谨慎进行,以免去除真实信息和引入错误的方向。在这项工作中,我们研究了应用基于单个和多个轴突束取向核的各向异性滤波的优点。为此,我们计算了基于扩散张量和多扩散张量模型的局部扩散核。我们在三种不同类型的DW-MRI数据上展示了我们的方法的好处:合成、体内人体数据和从扩散幻象中获得的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Single and Multi Diffusion-Tensor Based Kernels for Anisotropic Filtering of Brain DW-MR Images
Diffusion Weighted Magnetic Resonance Imaging is widely used to study the structure of the fiber pathways of brain white matter. Though, the recovered axon orientations could be prone to error because of the low signal to noise ratio. Spatial regularization can improve the estimations but it must be done carefully such that real information is not removed and false orientations are not introduced. In this work we investigate the advantages to apply an anisotropic filtering based on single and multiple axon bundle orientation kernels. To this aim, we compute local diffusion kernels based on Diffusion Tensor and multi Diffusion Tensor models. We show the benefits of our approach on three different types of DW-MRI Data: synthetic, in vivo human data, and acquired from a diffusion phantom.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信