{"title":"基于自注意多尺度贴片GAN的儿童面部年龄进展与回归","authors":"Praveen Kumar Chandaliya, N. Nain","doi":"10.1109/IJCB52358.2021.9484329","DOIUrl":null,"url":null,"abstract":"Face age progression and regression have accumulated significant dynamic research enthusiasm because of its gigantic effect on a wide scope of handy applications including finding lost/wanted persons, cross-age face recognition, amusement, and cosmetic studies. The two primary necessities of face age progression and regression, are identity preservation and aging exactitude. The existing state-of-the-art frameworks mostly focus on adult or long-span aging. In this work, we propose a child face age-progress and regress framework that generates photo-realistic face images with preserved identity.To facilitate child age synthesis, we apply a multi-scale patch discriminator learning strategy for training conditional generative adversarial nets (cGAN) which in-creases the stability of the discriminator, thereby making the learning task progressively more difficult for the generator. Moreover, we also introduce Self-Attention Block (SAB) to learn global and long-term dependencies within an internal representation of a child’s face. Thus, we present coarse-to-fine Self-Attention Multi-Scale Patch generative adversarial nets (SAMSP-GAN) model. Our new objective function, as well as multi-scale patch discrimination and, has shown both qualitative and quantitative improvements over the state-of-the-art approaches in terms of face verification, rank-1 identification, and age estimation on benchmarked children datasets.","PeriodicalId":175984,"journal":{"name":"2021 IEEE International Joint Conference on Biometrics (IJCB)","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Child Face Age Progression and Regression using Self-Attention Multi-Scale Patch GAN\",\"authors\":\"Praveen Kumar Chandaliya, N. Nain\",\"doi\":\"10.1109/IJCB52358.2021.9484329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Face age progression and regression have accumulated significant dynamic research enthusiasm because of its gigantic effect on a wide scope of handy applications including finding lost/wanted persons, cross-age face recognition, amusement, and cosmetic studies. The two primary necessities of face age progression and regression, are identity preservation and aging exactitude. The existing state-of-the-art frameworks mostly focus on adult or long-span aging. In this work, we propose a child face age-progress and regress framework that generates photo-realistic face images with preserved identity.To facilitate child age synthesis, we apply a multi-scale patch discriminator learning strategy for training conditional generative adversarial nets (cGAN) which in-creases the stability of the discriminator, thereby making the learning task progressively more difficult for the generator. Moreover, we also introduce Self-Attention Block (SAB) to learn global and long-term dependencies within an internal representation of a child’s face. Thus, we present coarse-to-fine Self-Attention Multi-Scale Patch generative adversarial nets (SAMSP-GAN) model. Our new objective function, as well as multi-scale patch discrimination and, has shown both qualitative and quantitative improvements over the state-of-the-art approaches in terms of face verification, rank-1 identification, and age estimation on benchmarked children datasets.\",\"PeriodicalId\":175984,\"journal\":{\"name\":\"2021 IEEE International Joint Conference on Biometrics (IJCB)\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Joint Conference on Biometrics (IJCB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCB52358.2021.9484329\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCB52358.2021.9484329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Child Face Age Progression and Regression using Self-Attention Multi-Scale Patch GAN
Face age progression and regression have accumulated significant dynamic research enthusiasm because of its gigantic effect on a wide scope of handy applications including finding lost/wanted persons, cross-age face recognition, amusement, and cosmetic studies. The two primary necessities of face age progression and regression, are identity preservation and aging exactitude. The existing state-of-the-art frameworks mostly focus on adult or long-span aging. In this work, we propose a child face age-progress and regress framework that generates photo-realistic face images with preserved identity.To facilitate child age synthesis, we apply a multi-scale patch discriminator learning strategy for training conditional generative adversarial nets (cGAN) which in-creases the stability of the discriminator, thereby making the learning task progressively more difficult for the generator. Moreover, we also introduce Self-Attention Block (SAB) to learn global and long-term dependencies within an internal representation of a child’s face. Thus, we present coarse-to-fine Self-Attention Multi-Scale Patch generative adversarial nets (SAMSP-GAN) model. Our new objective function, as well as multi-scale patch discrimination and, has shown both qualitative and quantitative improvements over the state-of-the-art approaches in terms of face verification, rank-1 identification, and age estimation on benchmarked children datasets.