Yuchuan Fan, A. Udalcovs, X. Pang, C. Natalino, R. Schatz, M. Furdek, S. Popov, O. Ozolins
{"title":"基于深度学习的相干传输系统预载波相位恢复EVM估计","authors":"Yuchuan Fan, A. Udalcovs, X. Pang, C. Natalino, R. Schatz, M. Furdek, S. Popov, O. Ozolins","doi":"10.1364/cleo_si.2021.sth1f.2","DOIUrl":null,"url":null,"abstract":"We exploit deep supervised learning and amplitude histograms of coherent optical signals captured before carrier phase recovery (CPR) to perform time-sensitive and accurate error vector magnitude (EVM) estimation for 32 Gbaud mQAM signal monitoring purposes.","PeriodicalId":384075,"journal":{"name":"2021 Conference on Lasers and Electro-Optics (CLEO)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Deep Learning Assisted Pre-Carrier Phase Recovery EVM Estimation for Coherent Transmission Systems\",\"authors\":\"Yuchuan Fan, A. Udalcovs, X. Pang, C. Natalino, R. Schatz, M. Furdek, S. Popov, O. Ozolins\",\"doi\":\"10.1364/cleo_si.2021.sth1f.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We exploit deep supervised learning and amplitude histograms of coherent optical signals captured before carrier phase recovery (CPR) to perform time-sensitive and accurate error vector magnitude (EVM) estimation for 32 Gbaud mQAM signal monitoring purposes.\",\"PeriodicalId\":384075,\"journal\":{\"name\":\"2021 Conference on Lasers and Electro-Optics (CLEO)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Conference on Lasers and Electro-Optics (CLEO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/cleo_si.2021.sth1f.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Conference on Lasers and Electro-Optics (CLEO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/cleo_si.2021.sth1f.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep Learning Assisted Pre-Carrier Phase Recovery EVM Estimation for Coherent Transmission Systems
We exploit deep supervised learning and amplitude histograms of coherent optical signals captured before carrier phase recovery (CPR) to perform time-sensitive and accurate error vector magnitude (EVM) estimation for 32 Gbaud mQAM signal monitoring purposes.