{"title":"可验证私有多方计算:范围和排名","authors":"Lan Zhang, Xiangyang Li, Yunhao Liu, Taeho Jung","doi":"10.1109/INFCOM.2013.6566844","DOIUrl":null,"url":null,"abstract":"The existing work on distributed secure multi-party computation, e.g., set operations, dot product, ranking, focus on the privacy protection aspects, while the verifiability of user inputs and outcomes are neglected. Most of the existing works assume that the involved parties will follow the protocol honestly. In practice, a malicious adversary can easily forge his/her input values to achieve incorrect outcomes or simply lie about the computation results to cheat other parities. In this work, we focus on the problem of verifiable privacy preserving multiparty computation. We thoroughly analyze the attacks on existing privacy preserving multi-party computation approaches and design a series of protocols for dot product, ranging and ranking, which are proved to be privacy preserving and verifiable. We implement our protocols on laptops and mobile phones. The results show that our verifiable private computation protocols are efficient both in computation and communication.","PeriodicalId":206346,"journal":{"name":"2013 Proceedings IEEE INFOCOM","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":"{\"title\":\"Verifiable private multi-party computation: Ranging and ranking\",\"authors\":\"Lan Zhang, Xiangyang Li, Yunhao Liu, Taeho Jung\",\"doi\":\"10.1109/INFCOM.2013.6566844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The existing work on distributed secure multi-party computation, e.g., set operations, dot product, ranking, focus on the privacy protection aspects, while the verifiability of user inputs and outcomes are neglected. Most of the existing works assume that the involved parties will follow the protocol honestly. In practice, a malicious adversary can easily forge his/her input values to achieve incorrect outcomes or simply lie about the computation results to cheat other parities. In this work, we focus on the problem of verifiable privacy preserving multiparty computation. We thoroughly analyze the attacks on existing privacy preserving multi-party computation approaches and design a series of protocols for dot product, ranging and ranking, which are proved to be privacy preserving and verifiable. We implement our protocols on laptops and mobile phones. The results show that our verifiable private computation protocols are efficient both in computation and communication.\",\"PeriodicalId\":206346,\"journal\":{\"name\":\"2013 Proceedings IEEE INFOCOM\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"48\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Proceedings IEEE INFOCOM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFCOM.2013.6566844\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Proceedings IEEE INFOCOM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFCOM.2013.6566844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Verifiable private multi-party computation: Ranging and ranking
The existing work on distributed secure multi-party computation, e.g., set operations, dot product, ranking, focus on the privacy protection aspects, while the verifiability of user inputs and outcomes are neglected. Most of the existing works assume that the involved parties will follow the protocol honestly. In practice, a malicious adversary can easily forge his/her input values to achieve incorrect outcomes or simply lie about the computation results to cheat other parities. In this work, we focus on the problem of verifiable privacy preserving multiparty computation. We thoroughly analyze the attacks on existing privacy preserving multi-party computation approaches and design a series of protocols for dot product, ranging and ranking, which are proved to be privacy preserving and verifiable. We implement our protocols on laptops and mobile phones. The results show that our verifiable private computation protocols are efficient both in computation and communication.