基于子模块优化的流机器人采样在线决策

Wenhao Luo, Changjoo Nam, K. Sycara
{"title":"基于子模块优化的流机器人采样在线决策","authors":"Wenhao Luo, Changjoo Nam, K. Sycara","doi":"10.1109/MFI.2017.8170416","DOIUrl":null,"url":null,"abstract":"We consider the problem of online robotic sampling in environmental monitoring tasks where the goal is to collect k best samples from n sequentially occurring measurements. In contrast to many existing works that seek to maximize the utility of the selected samples online, we aim to find the cardinality constrained subset of streaming measurements under irrevocable sampling decisions so that the prediction over untested measurements is most accurate. Using the information theoretic criterion, we present an online submodular algorithm for stream-based sample selection with a provable performance bound. We demonstrate the effectiveness of our algorithm via simulations of information gathering from indoor static sensors.","PeriodicalId":402371,"journal":{"name":"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Online decision making for stream-based robotic sampling via submodular optimization\",\"authors\":\"Wenhao Luo, Changjoo Nam, K. Sycara\",\"doi\":\"10.1109/MFI.2017.8170416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of online robotic sampling in environmental monitoring tasks where the goal is to collect k best samples from n sequentially occurring measurements. In contrast to many existing works that seek to maximize the utility of the selected samples online, we aim to find the cardinality constrained subset of streaming measurements under irrevocable sampling decisions so that the prediction over untested measurements is most accurate. Using the information theoretic criterion, we present an online submodular algorithm for stream-based sample selection with a provable performance bound. We demonstrate the effectiveness of our algorithm via simulations of information gathering from indoor static sensors.\",\"PeriodicalId\":402371,\"journal\":{\"name\":\"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MFI.2017.8170416\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI.2017.8170416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们考虑环境监测任务中的在线机器人采样问题,其目标是从n个顺序发生的测量中收集k个最佳样本。与许多寻求最大化在线选定样本效用的现有工作相反,我们的目标是在不可撤销的采样决策下找到流测量的基数约束子集,以便对未经测试的测量进行预测是最准确的。利用信息论准则,提出了一种基于流的样本选择在线子模块算法,该算法具有可证明的性能界。我们通过模拟室内静态传感器的信息收集来证明算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Online decision making for stream-based robotic sampling via submodular optimization
We consider the problem of online robotic sampling in environmental monitoring tasks where the goal is to collect k best samples from n sequentially occurring measurements. In contrast to many existing works that seek to maximize the utility of the selected samples online, we aim to find the cardinality constrained subset of streaming measurements under irrevocable sampling decisions so that the prediction over untested measurements is most accurate. Using the information theoretic criterion, we present an online submodular algorithm for stream-based sample selection with a provable performance bound. We demonstrate the effectiveness of our algorithm via simulations of information gathering from indoor static sensors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信