深度学习回归与SMF和FMF链接中QoT估计的分类

M. A. Amirabadi, M. Kahaei, S. Nezamalhosseini, A. Carena
{"title":"深度学习回归与SMF和FMF链接中QoT估计的分类","authors":"M. A. Amirabadi, M. Kahaei, S. Nezamalhosseini, A. Carena","doi":"10.1109/ICOP56156.2022.9911716","DOIUrl":null,"url":null,"abstract":"We investigate deep learning-based regression and classification for quality of transmission estimation in single-mode and few-mode fiber links. Results show efficiency and low complexity in both methods, however, regression performs better and classification is faster.","PeriodicalId":227957,"journal":{"name":"2022 Italian Conference on Optics and Photonics (ICOP)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Deep Learning Regression vs. Classification for QoT Estimation in SMF and FMF Links\",\"authors\":\"M. A. Amirabadi, M. Kahaei, S. Nezamalhosseini, A. Carena\",\"doi\":\"10.1109/ICOP56156.2022.9911716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate deep learning-based regression and classification for quality of transmission estimation in single-mode and few-mode fiber links. Results show efficiency and low complexity in both methods, however, regression performs better and classification is faster.\",\"PeriodicalId\":227957,\"journal\":{\"name\":\"2022 Italian Conference on Optics and Photonics (ICOP)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Italian Conference on Optics and Photonics (ICOP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOP56156.2022.9911716\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Italian Conference on Optics and Photonics (ICOP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOP56156.2022.9911716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们研究了基于深度学习的回归和分类,用于单模和少模光纤链路的传输质量估计。结果表明,两种方法均具有较好的效率和较低的复杂度,但回归性能更好,分类速度更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning Regression vs. Classification for QoT Estimation in SMF and FMF Links
We investigate deep learning-based regression and classification for quality of transmission estimation in single-mode and few-mode fiber links. Results show efficiency and low complexity in both methods, however, regression performs better and classification is faster.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信