一种基于遗传算法的鲁棒三维网格水印方法

M. R. Mouhamed, Mona M. Soliman, A. Darwish, A. Hassanien
{"title":"一种基于遗传算法的鲁棒三维网格水印方法","authors":"M. R. Mouhamed, Mona M. Soliman, A. Darwish, A. Hassanien","doi":"10.1109/ICICIS46948.2019.9014787","DOIUrl":null,"url":null,"abstract":"In this paper, an optimized 3D watermark approach is be presented, the embedded process depends on modifying the statistical distribution radial parameter. The proposed approach consists of three Steps, the first Step depends on selecting the best vertices that will carry the watermark stream bits, these vertices called the Points of Interest (POIs). The second Step is the training process using the genetic algorithm (GA) to detect the best parameter lambda that will be used to modify the statistical distribution, this lambda grantee the optimal balance between the imperceptibility and robustness. The third Step is the embedded process by using this best lambda. The experimental results shows that the proposed approach is robust against different types of connectivity attack (like subdivision and simplifications attack) and geometrical attacks (like similarity transformation, smoothing and adding noise). The experimental results compared with the well-known method.","PeriodicalId":200604,"journal":{"name":"2019 Ninth International Conference on Intelligent Computing and Information Systems (ICICIS)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Robust 3D Mesh Watermarking Approach Based on Genetic Algorithm\",\"authors\":\"M. R. Mouhamed, Mona M. Soliman, A. Darwish, A. Hassanien\",\"doi\":\"10.1109/ICICIS46948.2019.9014787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an optimized 3D watermark approach is be presented, the embedded process depends on modifying the statistical distribution radial parameter. The proposed approach consists of three Steps, the first Step depends on selecting the best vertices that will carry the watermark stream bits, these vertices called the Points of Interest (POIs). The second Step is the training process using the genetic algorithm (GA) to detect the best parameter lambda that will be used to modify the statistical distribution, this lambda grantee the optimal balance between the imperceptibility and robustness. The third Step is the embedded process by using this best lambda. The experimental results shows that the proposed approach is robust against different types of connectivity attack (like subdivision and simplifications attack) and geometrical attacks (like similarity transformation, smoothing and adding noise). The experimental results compared with the well-known method.\",\"PeriodicalId\":200604,\"journal\":{\"name\":\"2019 Ninth International Conference on Intelligent Computing and Information Systems (ICICIS)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Ninth International Conference on Intelligent Computing and Information Systems (ICICIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICIS46948.2019.9014787\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Ninth International Conference on Intelligent Computing and Information Systems (ICICIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIS46948.2019.9014787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种优化的三维水印方法,该方法的嵌入过程依赖于对统计分布径向参数的修改。该方法包括三个步骤,第一步是选择携带水印流比特的最佳顶点,这些顶点称为兴趣点(point of Interest, POIs)。第二步是使用遗传算法(GA)检测最佳参数lambda的训练过程,该参数lambda将用于修改统计分布,该lambda保证了不可感知性和鲁棒性之间的最佳平衡。第三步是使用这个最佳lambda来嵌入过程。实验结果表明,该方法对不同类型的连通性攻击(如细分和简化攻击)和几何攻击(如相似变换、平滑和添加噪声)具有鲁棒性。实验结果与常用方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Robust 3D Mesh Watermarking Approach Based on Genetic Algorithm
In this paper, an optimized 3D watermark approach is be presented, the embedded process depends on modifying the statistical distribution radial parameter. The proposed approach consists of three Steps, the first Step depends on selecting the best vertices that will carry the watermark stream bits, these vertices called the Points of Interest (POIs). The second Step is the training process using the genetic algorithm (GA) to detect the best parameter lambda that will be used to modify the statistical distribution, this lambda grantee the optimal balance between the imperceptibility and robustness. The third Step is the embedded process by using this best lambda. The experimental results shows that the proposed approach is robust against different types of connectivity attack (like subdivision and simplifications attack) and geometrical attacks (like similarity transformation, smoothing and adding noise). The experimental results compared with the well-known method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信