利用Kohonen特征映射监测同步发电机运行状态

H. Jiang, J. Penman
{"title":"利用Kohonen特征映射监测同步发电机运行状态","authors":"H. Jiang, J. Penman","doi":"10.1109/NNAT.1993.586058","DOIUrl":null,"url":null,"abstract":"This paper illustrates the way in which a neural network, employing unsupervised learning, can be used for the automatic surveillance of the operational condition of synchronous generators. Results show that, if the size of the network is chosen judiciously, then it is possible to cosistently, and unambiguously identifi a range of atypical conditions in such machines.","PeriodicalId":164805,"journal":{"name":"Workshop on Neural Network Applications and Tools","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Using Kohonen Feature Maps To Monitor The Condition Of Synchronous Generators\",\"authors\":\"H. Jiang, J. Penman\",\"doi\":\"10.1109/NNAT.1993.586058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper illustrates the way in which a neural network, employing unsupervised learning, can be used for the automatic surveillance of the operational condition of synchronous generators. Results show that, if the size of the network is chosen judiciously, then it is possible to cosistently, and unambiguously identifi a range of atypical conditions in such machines.\",\"PeriodicalId\":164805,\"journal\":{\"name\":\"Workshop on Neural Network Applications and Tools\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Neural Network Applications and Tools\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NNAT.1993.586058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Neural Network Applications and Tools","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNAT.1993.586058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文阐述了利用无监督学习的神经网络对同步发电机运行状态进行自动监控的方法。结果表明,如果明智地选择网络的大小,那么就有可能一致且明确地识别出此类机器中的一系列非典型条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Kohonen Feature Maps To Monitor The Condition Of Synchronous Generators
This paper illustrates the way in which a neural network, employing unsupervised learning, can be used for the automatic surveillance of the operational condition of synchronous generators. Results show that, if the size of the network is chosen judiciously, then it is possible to cosistently, and unambiguously identifi a range of atypical conditions in such machines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信