基于粒子群算法的异构无线传感器网络任务分配算法研究

Titus Issac, S. Silas, E. Rajsingh
{"title":"基于粒子群算法的异构无线传感器网络任务分配算法研究","authors":"Titus Issac, S. Silas, E. Rajsingh","doi":"10.1109/ICSPC46172.2019.8976850","DOIUrl":null,"url":null,"abstract":"Modern heterogeneous wireless sensor nodes can be used to develop a wide plethora of sophisticated Wireless Sensor Network (WSN) applications. In a WSN, the nodes collaborate with each other to achieve the desired objectives by employing a task assignment algorithm. The majority of the existing WSN task assignment algorithms were designed for a homogeneous environment. However, the current trend of using heterogeneous nodes in WSN application warrants an elaborate investigations on the various factors influencing task assignment in heterogeneous environment. Extensive analysis on decisive factors such as node properties, WSN architecture, WSN application types were exhaustively carried out. Subsequently, a multi-objective based task assignment algorithm using Particle Swarm Optimization (PSO) was proposed. Various case studies on PSO by varying the fitness function and criteria weights were modelled and experimented through simulation to study the feasibility of achieving the desired objectives. The performance metrics such as energy consumption, response time and successful task assignment ratio were analyzed under different cases. Our investigations reveal that multi-objective based PSO outperforms its legacy counterpart in achieving the desired objectives with higher successful task assignment ratio in the heterogeneous environment.","PeriodicalId":321652,"journal":{"name":"2019 2nd International Conference on Signal Processing and Communication (ICSPC)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Investigations on PSO based task assignment algorithms for heterogeneous wireless sensor network\",\"authors\":\"Titus Issac, S. Silas, E. Rajsingh\",\"doi\":\"10.1109/ICSPC46172.2019.8976850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern heterogeneous wireless sensor nodes can be used to develop a wide plethora of sophisticated Wireless Sensor Network (WSN) applications. In a WSN, the nodes collaborate with each other to achieve the desired objectives by employing a task assignment algorithm. The majority of the existing WSN task assignment algorithms were designed for a homogeneous environment. However, the current trend of using heterogeneous nodes in WSN application warrants an elaborate investigations on the various factors influencing task assignment in heterogeneous environment. Extensive analysis on decisive factors such as node properties, WSN architecture, WSN application types were exhaustively carried out. Subsequently, a multi-objective based task assignment algorithm using Particle Swarm Optimization (PSO) was proposed. Various case studies on PSO by varying the fitness function and criteria weights were modelled and experimented through simulation to study the feasibility of achieving the desired objectives. The performance metrics such as energy consumption, response time and successful task assignment ratio were analyzed under different cases. Our investigations reveal that multi-objective based PSO outperforms its legacy counterpart in achieving the desired objectives with higher successful task assignment ratio in the heterogeneous environment.\",\"PeriodicalId\":321652,\"journal\":{\"name\":\"2019 2nd International Conference on Signal Processing and Communication (ICSPC)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 2nd International Conference on Signal Processing and Communication (ICSPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSPC46172.2019.8976850\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 2nd International Conference on Signal Processing and Communication (ICSPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSPC46172.2019.8976850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

现代异构无线传感器节点可用于开发大量复杂的无线传感器网络(WSN)应用。在WSN中,节点之间通过使用任务分配算法相互协作以实现期望的目标。现有的大多数WSN任务分配算法都是针对同构环境设计的。然而,目前在无线传感器网络应用中使用异构节点的趋势需要对异构环境下影响任务分配的各种因素进行详细的研究。对节点属性、WSN架构、WSN应用类型等决定性因素进行了详尽的分析。随后,提出了一种基于粒子群算法的多目标任务分配算法。通过对不同适应度函数和准则权值的粒子群算法进行建模和仿真实验,研究其实现预期目标的可行性。分析了不同情况下的能耗、响应时间和任务分配成功率等性能指标。研究表明,在异构环境下,基于多目标的粒子群算法在实现预期目标方面优于传统粒子群算法,任务分配成功率更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigations on PSO based task assignment algorithms for heterogeneous wireless sensor network
Modern heterogeneous wireless sensor nodes can be used to develop a wide plethora of sophisticated Wireless Sensor Network (WSN) applications. In a WSN, the nodes collaborate with each other to achieve the desired objectives by employing a task assignment algorithm. The majority of the existing WSN task assignment algorithms were designed for a homogeneous environment. However, the current trend of using heterogeneous nodes in WSN application warrants an elaborate investigations on the various factors influencing task assignment in heterogeneous environment. Extensive analysis on decisive factors such as node properties, WSN architecture, WSN application types were exhaustively carried out. Subsequently, a multi-objective based task assignment algorithm using Particle Swarm Optimization (PSO) was proposed. Various case studies on PSO by varying the fitness function and criteria weights were modelled and experimented through simulation to study the feasibility of achieving the desired objectives. The performance metrics such as energy consumption, response time and successful task assignment ratio were analyzed under different cases. Our investigations reveal that multi-objective based PSO outperforms its legacy counterpart in achieving the desired objectives with higher successful task assignment ratio in the heterogeneous environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信