神经-现象学混合子模型及其在地空路径信号衰减预测中的应用

L. Calôba, G. A. Alencar, M. S. Assis
{"title":"神经-现象学混合子模型及其在地空路径信号衰减预测中的应用","authors":"L. Calôba, G. A. Alencar, M. S. Assis","doi":"10.1109/IJCNN.2005.1556273","DOIUrl":null,"url":null,"abstract":"Neural models may be very precise but, being numerical, provide only limited contribution to the understanding of the phenomenological process, contrary to phenomenological models. In this paper we use neural techniques to evaluate and to provide information on the sub-models that composes a phenomenological model. We also show how some hybrid neural-phenomenological sub-models may be used to maximally preserve the phenomenological information while providing numerical precision. The problem of radio wave degradation by rain is critical for the design of reliable Earth-satellite communication links operating above 10 GHz. Phenomenological models available in the literature are complex and show poor accuracy, and so are good candidates for the proposed technique. The use of this technique in the UIT-R model presented very interesting results.","PeriodicalId":365690,"journal":{"name":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hybrid neural-phenomenological sub-models and its application to Earth-space path signal attenuation prediction\",\"authors\":\"L. Calôba, G. A. Alencar, M. S. Assis\",\"doi\":\"10.1109/IJCNN.2005.1556273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neural models may be very precise but, being numerical, provide only limited contribution to the understanding of the phenomenological process, contrary to phenomenological models. In this paper we use neural techniques to evaluate and to provide information on the sub-models that composes a phenomenological model. We also show how some hybrid neural-phenomenological sub-models may be used to maximally preserve the phenomenological information while providing numerical precision. The problem of radio wave degradation by rain is critical for the design of reliable Earth-satellite communication links operating above 10 GHz. Phenomenological models available in the literature are complex and show poor accuracy, and so are good candidates for the proposed technique. The use of this technique in the UIT-R model presented very interesting results.\",\"PeriodicalId\":365690,\"journal\":{\"name\":\"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.\",\"volume\":\"144 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2005.1556273\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2005.1556273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

神经模型可能非常精确,但由于是数值的,与现象学模型相反,对理解现象学过程的贡献有限。在本文中,我们使用神经技术来评估和提供组成现象学模型的子模型的信息。我们还展示了如何使用一些混合神经-现象学子模型来最大限度地保留现象学信息,同时提供数值精度。雨水造成的无线电波衰减问题对于设计运行在10ghz以上的可靠地球卫星通信链路至关重要。在文献中可用的现象学模型是复杂的,显示出较差的准确性,因此是很好的候选人提出的技术。在unit - r模型中使用这种技术产生了非常有趣的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid neural-phenomenological sub-models and its application to Earth-space path signal attenuation prediction
Neural models may be very precise but, being numerical, provide only limited contribution to the understanding of the phenomenological process, contrary to phenomenological models. In this paper we use neural techniques to evaluate and to provide information on the sub-models that composes a phenomenological model. We also show how some hybrid neural-phenomenological sub-models may be used to maximally preserve the phenomenological information while providing numerical precision. The problem of radio wave degradation by rain is critical for the design of reliable Earth-satellite communication links operating above 10 GHz. Phenomenological models available in the literature are complex and show poor accuracy, and so are good candidates for the proposed technique. The use of this technique in the UIT-R model presented very interesting results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信