克拉姆-伦德伯格风险过程股利支付预期效用的优化

Z. Palmowski, Sebastian Baran
{"title":"克拉姆-伦德伯格风险过程股利支付预期效用的优化","authors":"Z. Palmowski, Sebastian Baran","doi":"10.4064/AM2333-5-2017","DOIUrl":null,"url":null,"abstract":"We consider the problem of maximizing the discounted utility of dividend payments of an insurance company whose reserves are modeled as a classical Cram\\'er-Lundberg risk process. We investigate this optimization problem under the constraint that dividend rate is bounded. We prove that the value function fulfills the Hamilton-Jacobi-Bellman equation and we identify the optimal dividend strategy.","PeriodicalId":197400,"journal":{"name":"arXiv: Computational Finance","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimizing expected utility of dividend payments for a Cram\\\\'er-Lundberg risk proces\",\"authors\":\"Z. Palmowski, Sebastian Baran\",\"doi\":\"10.4064/AM2333-5-2017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of maximizing the discounted utility of dividend payments of an insurance company whose reserves are modeled as a classical Cram\\\\'er-Lundberg risk process. We investigate this optimization problem under the constraint that dividend rate is bounded. We prove that the value function fulfills the Hamilton-Jacobi-Bellman equation and we identify the optimal dividend strategy.\",\"PeriodicalId\":197400,\"journal\":{\"name\":\"arXiv: Computational Finance\",\"volume\":\"136 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Computational Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4064/AM2333-5-2017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computational Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4064/AM2333-5-2017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

考虑一类保险公司股利支付的贴现效用最大化问题,该保险公司的准备金被建模为经典的克拉姆-伦德伯格风险过程。研究了股利率有界约束下的优化问题。我们证明了价值函数满足Hamilton-Jacobi-Bellman方程,并确定了最优股利策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing expected utility of dividend payments for a Cram\'er-Lundberg risk proces
We consider the problem of maximizing the discounted utility of dividend payments of an insurance company whose reserves are modeled as a classical Cram\'er-Lundberg risk process. We investigate this optimization problem under the constraint that dividend rate is bounded. We prove that the value function fulfills the Hamilton-Jacobi-Bellman equation and we identify the optimal dividend strategy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信