Hillel Sanhedrai, Jianxi Gao, M. Schwartz, S. Havlin, B. Barzel
{"title":"通过微观干预重振失败的网络","authors":"Hillel Sanhedrai, Jianxi Gao, M. Schwartz, S. Havlin, B. Barzel","doi":"10.21203/rs.3.rs-116071/v1","DOIUrl":null,"url":null,"abstract":"\n From mass extinction to cell death, complex networked systems often exhibit abrupt dynamic transitions between desirable and undesirable states. Such transitions are often caused by topological perturbations, such as node or link removal, or decreasing link strengths. The problem is that reversing the topological damage, namely retrieving the lost nodes/links or reinforcing the weakened interactions, does not guarantee the spontaneous recovery to the desired functional state. Indeed, many of the relevant systems exhibit a hysteresis phenomenon, remaining in the dysfunctional state, despite reconstructing their damaged topology. To address this challenge, we develop a two-step recovery scheme: first - topological reconstruction to the point where the system can be revived, then dynamic interventions, to reignite the system's lost functionality. Applied to a range of nonlinear network dynamics, we identify a complex system's recoverable phase, a state in which the system can be reignited by a microscopic intervention, i.e. controlling just a single node. Mapping the boundaries of this newly discovered phase, we obtain guidelines for our two-step recovery.","PeriodicalId":139082,"journal":{"name":"arXiv: Adaptation and Self-Organizing Systems","volume":"11652 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Reviving a failed network via microscopic interventions\",\"authors\":\"Hillel Sanhedrai, Jianxi Gao, M. Schwartz, S. Havlin, B. Barzel\",\"doi\":\"10.21203/rs.3.rs-116071/v1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n From mass extinction to cell death, complex networked systems often exhibit abrupt dynamic transitions between desirable and undesirable states. Such transitions are often caused by topological perturbations, such as node or link removal, or decreasing link strengths. The problem is that reversing the topological damage, namely retrieving the lost nodes/links or reinforcing the weakened interactions, does not guarantee the spontaneous recovery to the desired functional state. Indeed, many of the relevant systems exhibit a hysteresis phenomenon, remaining in the dysfunctional state, despite reconstructing their damaged topology. To address this challenge, we develop a two-step recovery scheme: first - topological reconstruction to the point where the system can be revived, then dynamic interventions, to reignite the system's lost functionality. Applied to a range of nonlinear network dynamics, we identify a complex system's recoverable phase, a state in which the system can be reignited by a microscopic intervention, i.e. controlling just a single node. Mapping the boundaries of this newly discovered phase, we obtain guidelines for our two-step recovery.\",\"PeriodicalId\":139082,\"journal\":{\"name\":\"arXiv: Adaptation and Self-Organizing Systems\",\"volume\":\"11652 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Adaptation and Self-Organizing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21203/rs.3.rs-116071/v1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Adaptation and Self-Organizing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-116071/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reviving a failed network via microscopic interventions
From mass extinction to cell death, complex networked systems often exhibit abrupt dynamic transitions between desirable and undesirable states. Such transitions are often caused by topological perturbations, such as node or link removal, or decreasing link strengths. The problem is that reversing the topological damage, namely retrieving the lost nodes/links or reinforcing the weakened interactions, does not guarantee the spontaneous recovery to the desired functional state. Indeed, many of the relevant systems exhibit a hysteresis phenomenon, remaining in the dysfunctional state, despite reconstructing their damaged topology. To address this challenge, we develop a two-step recovery scheme: first - topological reconstruction to the point where the system can be revived, then dynamic interventions, to reignite the system's lost functionality. Applied to a range of nonlinear network dynamics, we identify a complex system's recoverable phase, a state in which the system can be reignited by a microscopic intervention, i.e. controlling just a single node. Mapping the boundaries of this newly discovered phase, we obtain guidelines for our two-step recovery.