熔盐堆中核石墨与熔盐的相容性

Zhoutong He, Hui Tang, Can Zhang, Yantao Gao, H. Xia, Xingtai Zhou
{"title":"熔盐堆中核石墨与熔盐的相容性","authors":"Zhoutong He, Hui Tang, Can Zhang, Yantao Gao, H. Xia, Xingtai Zhou","doi":"10.1115/ICONE26-82065","DOIUrl":null,"url":null,"abstract":"In thermal Molten Salt Reactors, the nuclear graphite core is in direct contact with the molten salt coolant. Due to the porous nature of nuclear graphite, the molten salt may infiltrate the nuclear graphite, which may affect the mechanical strength and irradiation behavior of the nuclear graphite. In order to evaluate the infiltration behavior of molten salt in nuclear graphite, both FLiNaK and FLiBe salts were used to infiltrate two typical nuclear graphite grades: IG110 and NBG18. The pressure dependence of the infiltration weight gain ratio was measured. The influence of molten salt infiltration on the thermal properties of these two graphite grades, such as their thermal expansion behavior and thermal conductivity, was also measured. The mechanical strength of the FLiNaK-infiltrated graphite was measured at room temperature and elevated temperature, and showed that the mechanical strength of the nuclear graphite was enhanced at room temperature and weakened at elevated temperature by molten salt infiltration. Finally, the thermal expansion coefficient and the fracture surface analysis measured after FLiNaK infiltration indicated that the stress induced by molten salt infiltration could be one of the reasons for the graphite property changes.","PeriodicalId":237355,"journal":{"name":"Volume 2: Plant Systems, Structures, Components, and Materials; Risk Assessments and Management","volume":"234 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Compatibility of Nuclear Graphite With Molten Salt in the Molten Salt Reactor\",\"authors\":\"Zhoutong He, Hui Tang, Can Zhang, Yantao Gao, H. Xia, Xingtai Zhou\",\"doi\":\"10.1115/ICONE26-82065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In thermal Molten Salt Reactors, the nuclear graphite core is in direct contact with the molten salt coolant. Due to the porous nature of nuclear graphite, the molten salt may infiltrate the nuclear graphite, which may affect the mechanical strength and irradiation behavior of the nuclear graphite. In order to evaluate the infiltration behavior of molten salt in nuclear graphite, both FLiNaK and FLiBe salts were used to infiltrate two typical nuclear graphite grades: IG110 and NBG18. The pressure dependence of the infiltration weight gain ratio was measured. The influence of molten salt infiltration on the thermal properties of these two graphite grades, such as their thermal expansion behavior and thermal conductivity, was also measured. The mechanical strength of the FLiNaK-infiltrated graphite was measured at room temperature and elevated temperature, and showed that the mechanical strength of the nuclear graphite was enhanced at room temperature and weakened at elevated temperature by molten salt infiltration. Finally, the thermal expansion coefficient and the fracture surface analysis measured after FLiNaK infiltration indicated that the stress induced by molten salt infiltration could be one of the reasons for the graphite property changes.\",\"PeriodicalId\":237355,\"journal\":{\"name\":\"Volume 2: Plant Systems, Structures, Components, and Materials; Risk Assessments and Management\",\"volume\":\"234 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2: Plant Systems, Structures, Components, and Materials; Risk Assessments and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/ICONE26-82065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: Plant Systems, Structures, Components, and Materials; Risk Assessments and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ICONE26-82065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在热熔盐反应堆中,石墨芯与熔盐冷却剂直接接触。由于核石墨的多孔性,熔盐可能渗入核石墨,影响核石墨的机械强度和辐照性能。为了评价熔盐在核石墨中的渗透行为,采用FLiNaK和FLiBe盐分别渗透IG110和NBG18两种典型核石墨等级。测定了渗透增重比与压力的关系。研究了熔盐渗透对两种石墨热膨胀性能和导热性能的影响。在室温和高温下测量了flinak -浸润石墨的机械强度,结果表明熔盐浸润使核石墨的机械强度在室温下增强,在高温下减弱。最后,通过测量FLiNaK入渗后的热膨胀系数和断口形貌分析表明,熔盐入渗引起的应力可能是导致石墨性能变化的原因之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Compatibility of Nuclear Graphite With Molten Salt in the Molten Salt Reactor
In thermal Molten Salt Reactors, the nuclear graphite core is in direct contact with the molten salt coolant. Due to the porous nature of nuclear graphite, the molten salt may infiltrate the nuclear graphite, which may affect the mechanical strength and irradiation behavior of the nuclear graphite. In order to evaluate the infiltration behavior of molten salt in nuclear graphite, both FLiNaK and FLiBe salts were used to infiltrate two typical nuclear graphite grades: IG110 and NBG18. The pressure dependence of the infiltration weight gain ratio was measured. The influence of molten salt infiltration on the thermal properties of these two graphite grades, such as their thermal expansion behavior and thermal conductivity, was also measured. The mechanical strength of the FLiNaK-infiltrated graphite was measured at room temperature and elevated temperature, and showed that the mechanical strength of the nuclear graphite was enhanced at room temperature and weakened at elevated temperature by molten salt infiltration. Finally, the thermal expansion coefficient and the fracture surface analysis measured after FLiNaK infiltration indicated that the stress induced by molten salt infiltration could be one of the reasons for the graphite property changes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信