{"title":"基于FPGA的自动驾驶汽车异构传感器数据融合方法","authors":"D. Créno, B. Senouci, Rafik Zitouni","doi":"10.1109/ICUFN49451.2021.9528721","DOIUrl":null,"url":null,"abstract":"The new era of autonomous vehicles is considered as one of hot topics in Cyber Physical Systems exploration. It uses many sensors and functions to improve vehicle perception. The decision maker offers a flexible way to define the vehicle behaviour whereas the convoy driving mode is one important use case to explore more driving related issues. This paper reports an overview of on-going work on FPGA prototyping to improve the overall speed of the decision-making process and enable the convoy to drive at the higher speed safely. We present a data fusion methodology using heterogeneous Sensors (Lidar & Camera). Our methodology is based on an FPGA approach to speed up the processing time. A prototype has been built to explore new issues and solutions.","PeriodicalId":318542,"journal":{"name":"2021 Twelfth International Conference on Ubiquitous and Future Networks (ICUFN)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FPGA based approach for Heterogenous Sensors Data Fusion in Autonomous Vehicles\",\"authors\":\"D. Créno, B. Senouci, Rafik Zitouni\",\"doi\":\"10.1109/ICUFN49451.2021.9528721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The new era of autonomous vehicles is considered as one of hot topics in Cyber Physical Systems exploration. It uses many sensors and functions to improve vehicle perception. The decision maker offers a flexible way to define the vehicle behaviour whereas the convoy driving mode is one important use case to explore more driving related issues. This paper reports an overview of on-going work on FPGA prototyping to improve the overall speed of the decision-making process and enable the convoy to drive at the higher speed safely. We present a data fusion methodology using heterogeneous Sensors (Lidar & Camera). Our methodology is based on an FPGA approach to speed up the processing time. A prototype has been built to explore new issues and solutions.\",\"PeriodicalId\":318542,\"journal\":{\"name\":\"2021 Twelfth International Conference on Ubiquitous and Future Networks (ICUFN)\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Twelfth International Conference on Ubiquitous and Future Networks (ICUFN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICUFN49451.2021.9528721\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Twelfth International Conference on Ubiquitous and Future Networks (ICUFN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUFN49451.2021.9528721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
FPGA based approach for Heterogenous Sensors Data Fusion in Autonomous Vehicles
The new era of autonomous vehicles is considered as one of hot topics in Cyber Physical Systems exploration. It uses many sensors and functions to improve vehicle perception. The decision maker offers a flexible way to define the vehicle behaviour whereas the convoy driving mode is one important use case to explore more driving related issues. This paper reports an overview of on-going work on FPGA prototyping to improve the overall speed of the decision-making process and enable the convoy to drive at the higher speed safely. We present a data fusion methodology using heterogeneous Sensors (Lidar & Camera). Our methodology is based on an FPGA approach to speed up the processing time. A prototype has been built to explore new issues and solutions.