子空间跟踪在时间更新中的优势

Matthias Lechtenberg, J. Götze
{"title":"子空间跟踪在时间更新中的优势","authors":"Matthias Lechtenberg, J. Götze","doi":"10.1109/ISSPIT.2010.5711805","DOIUrl":null,"url":null,"abstract":"When doing parameter estimation, ESPRIT is an often used algorithm. As input, ESPRIT needs the eigenvectors of the signal subspace. These can be generated by an eigenvalue decomposition or by subspace tracking algorithms. In this paper, we demonstrate, that subspace tracking is superior not only regarding computational complexity but also regarding accuracy, which is due to its temporal updating character. We will also detail the circumstances for which this holds and that delay is a side-effect.","PeriodicalId":308189,"journal":{"name":"The 10th IEEE International Symposium on Signal Processing and Information Technology","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On the advantages of subspace tracking for temporal updating\",\"authors\":\"Matthias Lechtenberg, J. Götze\",\"doi\":\"10.1109/ISSPIT.2010.5711805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When doing parameter estimation, ESPRIT is an often used algorithm. As input, ESPRIT needs the eigenvectors of the signal subspace. These can be generated by an eigenvalue decomposition or by subspace tracking algorithms. In this paper, we demonstrate, that subspace tracking is superior not only regarding computational complexity but also regarding accuracy, which is due to its temporal updating character. We will also detail the circumstances for which this holds and that delay is a side-effect.\",\"PeriodicalId\":308189,\"journal\":{\"name\":\"The 10th IEEE International Symposium on Signal Processing and Information Technology\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 10th IEEE International Symposium on Signal Processing and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSPIT.2010.5711805\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 10th IEEE International Symposium on Signal Processing and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2010.5711805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在进行参数估计时,ESPRIT是一种常用的算法。作为输入,ESPRIT需要信号子空间的特征向量。这些可以通过特征值分解或子空间跟踪算法生成。在本文中,我们证明了子空间跟踪不仅在计算复杂度上优越,而且在精度上优越,这是由于它的时间更新特性。我们还将详细说明这种情况,并说明延迟是一种副作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the advantages of subspace tracking for temporal updating
When doing parameter estimation, ESPRIT is an often used algorithm. As input, ESPRIT needs the eigenvectors of the signal subspace. These can be generated by an eigenvalue decomposition or by subspace tracking algorithms. In this paper, we demonstrate, that subspace tracking is superior not only regarding computational complexity but also regarding accuracy, which is due to its temporal updating character. We will also detail the circumstances for which this holds and that delay is a side-effect.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信