ECR离子阱磁等离子体中射频离子加热研究

G. Torrisi, D. Mascali, A. Galatà, L. Celona, G. Mauro, E. Naselli, G. Sorbello, S. Gammino
{"title":"ECR离子阱磁等离子体中射频离子加热研究","authors":"G. Torrisi, D. Mascali, A. Galatà, L. Celona, G. Mauro, E. Naselli, G. Sorbello, S. Gammino","doi":"10.1109/ICEAA.2019.8879288","DOIUrl":null,"url":null,"abstract":"The Electron Cyclotron Resonance Ion Sources (ECRIS) are nowadays the most effective devices to provide relatively intense currents for highly charged ions devoted to particle accelerators for nuclear science and applications. In ECRIS, the main mechanism of microwave-to-electrons energy transfer is the Electron Cyclotron Resonance heating, when electrons gyrofrequency $\\boldsymbol{f}_{\\boldsymbol{ce}}=\\boldsymbol{eB}/(2\\boldsymbol{\\pi} \\boldsymbol{m}_{\\boldsymbol{e}})$ equals the frequency $\\boldsymbol{f}_{\\boldsymbol{\\mu} \\boldsymbol{wave}}$ of the injected microwaves. In ECR plasmas, because of the low electron-ion collision cross-section, the ions remain cold (few eV or less). A direct mastering of the ion temperature through Ion Cyclotron Resonance Heating (ICRH) could be relevant both for improving the performances of the ECRIS as well as for fundamental Physics. In this latter case, the aim is to investigate nuclear decays as a function of the ionization state or the ion temperature. In this paper, the modeling of Radio Frequency (RF) wave-plasma interactions in the ICRH range is investigated for the first time in a compact ECR, B-minimum plasma trap. RF field computation - based on a 3D full-wave FEM-based code - is able to predict wave propagation and power absorption in a non-uniform “cold” anisotropic plasma bounded by a metallic resonator and immersed in a magnetic configuration typical of ECR ion sources. Moreover, some technological aspects and a conceptual design of the RF antenna and related systems delivering multi-kilowatts of power to the plasma ion component are discussed.","PeriodicalId":237030,"journal":{"name":"2019 International Conference on Electromagnetics in Advanced Applications (ICEAA)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of Radiofrequency Ion Heating in the magnetoplasma of an ECR ion trap\",\"authors\":\"G. Torrisi, D. Mascali, A. Galatà, L. Celona, G. Mauro, E. Naselli, G. Sorbello, S. Gammino\",\"doi\":\"10.1109/ICEAA.2019.8879288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Electron Cyclotron Resonance Ion Sources (ECRIS) are nowadays the most effective devices to provide relatively intense currents for highly charged ions devoted to particle accelerators for nuclear science and applications. In ECRIS, the main mechanism of microwave-to-electrons energy transfer is the Electron Cyclotron Resonance heating, when electrons gyrofrequency $\\\\boldsymbol{f}_{\\\\boldsymbol{ce}}=\\\\boldsymbol{eB}/(2\\\\boldsymbol{\\\\pi} \\\\boldsymbol{m}_{\\\\boldsymbol{e}})$ equals the frequency $\\\\boldsymbol{f}_{\\\\boldsymbol{\\\\mu} \\\\boldsymbol{wave}}$ of the injected microwaves. In ECR plasmas, because of the low electron-ion collision cross-section, the ions remain cold (few eV or less). A direct mastering of the ion temperature through Ion Cyclotron Resonance Heating (ICRH) could be relevant both for improving the performances of the ECRIS as well as for fundamental Physics. In this latter case, the aim is to investigate nuclear decays as a function of the ionization state or the ion temperature. In this paper, the modeling of Radio Frequency (RF) wave-plasma interactions in the ICRH range is investigated for the first time in a compact ECR, B-minimum plasma trap. RF field computation - based on a 3D full-wave FEM-based code - is able to predict wave propagation and power absorption in a non-uniform “cold” anisotropic plasma bounded by a metallic resonator and immersed in a magnetic configuration typical of ECR ion sources. Moreover, some technological aspects and a conceptual design of the RF antenna and related systems delivering multi-kilowatts of power to the plasma ion component are discussed.\",\"PeriodicalId\":237030,\"journal\":{\"name\":\"2019 International Conference on Electromagnetics in Advanced Applications (ICEAA)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Electromagnetics in Advanced Applications (ICEAA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEAA.2019.8879288\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Electromagnetics in Advanced Applications (ICEAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEAA.2019.8879288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电子回旋共振离子源(ECRIS)是目前最有效的装置,为高电荷离子提供相对强的电流,用于核科学和应用的粒子加速器。在ECRIS中,微波到电子能量传递的主要机制是电子回旋共振加热,电子回旋频率$\boldsymbol{f}_{\boldsymbol{ce}}=\boldsymbol{eB}/(2\boldsymbol{\pi} \boldsymbol{m}_{\boldsymbol{e}})$等于注入微波的频率$\boldsymbol{f}_{\boldsymbol{\mu} \boldsymbol{wave}}$。在ECR等离子体中,由于电子-离子碰撞截面较低,离子保持低温(几eV或更低)。通过离子回旋共振加热(ICRH)直接掌握离子温度,对提高ECRIS的性能和基础物理学都有重要意义。在后一种情况下,目的是研究核衰变作为电离状态或离子温度的函数。本文首次在紧凑ECR, b -最小等离子体阱中研究了ICRH范围内射频(RF)波与等离子体相互作用的模型。射频场计算-基于三维全波fem -能够预测非均匀“冷”各向异性等离子体中的波传播和功率吸收,该等离子体由金属谐振器包围,浸入典型ECR离子源的磁性结构中。此外,还讨论了射频天线和向等离子体离子组件提供数千瓦功率的相关系统的一些技术方面和概念设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of Radiofrequency Ion Heating in the magnetoplasma of an ECR ion trap
The Electron Cyclotron Resonance Ion Sources (ECRIS) are nowadays the most effective devices to provide relatively intense currents for highly charged ions devoted to particle accelerators for nuclear science and applications. In ECRIS, the main mechanism of microwave-to-electrons energy transfer is the Electron Cyclotron Resonance heating, when electrons gyrofrequency $\boldsymbol{f}_{\boldsymbol{ce}}=\boldsymbol{eB}/(2\boldsymbol{\pi} \boldsymbol{m}_{\boldsymbol{e}})$ equals the frequency $\boldsymbol{f}_{\boldsymbol{\mu} \boldsymbol{wave}}$ of the injected microwaves. In ECR plasmas, because of the low electron-ion collision cross-section, the ions remain cold (few eV or less). A direct mastering of the ion temperature through Ion Cyclotron Resonance Heating (ICRH) could be relevant both for improving the performances of the ECRIS as well as for fundamental Physics. In this latter case, the aim is to investigate nuclear decays as a function of the ionization state or the ion temperature. In this paper, the modeling of Radio Frequency (RF) wave-plasma interactions in the ICRH range is investigated for the first time in a compact ECR, B-minimum plasma trap. RF field computation - based on a 3D full-wave FEM-based code - is able to predict wave propagation and power absorption in a non-uniform “cold” anisotropic plasma bounded by a metallic resonator and immersed in a magnetic configuration typical of ECR ion sources. Moreover, some technological aspects and a conceptual design of the RF antenna and related systems delivering multi-kilowatts of power to the plasma ion component are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信