{"title":"学习紧凑二进制码的信噪比最大化哈希","authors":"Honghai Yu, P. Moulin","doi":"10.1109/ICASSP.2015.7178259","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel robust hashing algorithm based on signal-to-noise ratio (SNR) maximization to learn binary codes. We first motivate SNR maximization for robust hashing in a statistical model, under which maximizing SNR minimizes the robust hashing error probability. A globally optimal solution can be obtained by solving a generalized eigenvalue problem. The proposed algorithm is tested on both synthetic and real datasets, showing significant performance gain over existing hashing algorithms.","PeriodicalId":117666,"journal":{"name":"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"143 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"SNR maximization hashing for learning compact binary codes\",\"authors\":\"Honghai Yu, P. Moulin\",\"doi\":\"10.1109/ICASSP.2015.7178259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel robust hashing algorithm based on signal-to-noise ratio (SNR) maximization to learn binary codes. We first motivate SNR maximization for robust hashing in a statistical model, under which maximizing SNR minimizes the robust hashing error probability. A globally optimal solution can be obtained by solving a generalized eigenvalue problem. The proposed algorithm is tested on both synthetic and real datasets, showing significant performance gain over existing hashing algorithms.\",\"PeriodicalId\":117666,\"journal\":{\"name\":\"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"143 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2015.7178259\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2015.7178259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SNR maximization hashing for learning compact binary codes
In this paper, we propose a novel robust hashing algorithm based on signal-to-noise ratio (SNR) maximization to learn binary codes. We first motivate SNR maximization for robust hashing in a statistical model, under which maximizing SNR minimizes the robust hashing error probability. A globally optimal solution can be obtained by solving a generalized eigenvalue problem. The proposed algorithm is tested on both synthetic and real datasets, showing significant performance gain over existing hashing algorithms.