{"title":"基于注意力的自动驾驶汽车供需预测","authors":"Zikai Zhang, Yidong Li, Hai-rong Dong, Yizhe You, Fengping Zhao","doi":"10.1109/PDCAT46702.2019.00085","DOIUrl":null,"url":null,"abstract":"As one of the important functions of the intelligent transportation system (ITS), supply-demand prediction for autonomous vehicles provides a decision basis for its control. In this paper, we present two prediction models (i.e. ARLP model and Advanced ARLP model) based on two system environments that only the current day's historical data is available or several days' historical data are available. These two models jointly consider the spatial, temporal, and semantic relations. Spatial dependency is captured with residual network and dimension reduction. Short term temporal dependency is captured with LSTM. Long term temporal dependency and temporal shifting are captured with LSTM and attention mechanism. Semantic dependency is captured with multi-attention mechanism. Extensive experiments show that our frameworks provide more accurate prediction results than the existing methods.","PeriodicalId":166126,"journal":{"name":"2019 20th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Attention-Based Supply-Demand Prediction for Autonomous Vehicles\",\"authors\":\"Zikai Zhang, Yidong Li, Hai-rong Dong, Yizhe You, Fengping Zhao\",\"doi\":\"10.1109/PDCAT46702.2019.00085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As one of the important functions of the intelligent transportation system (ITS), supply-demand prediction for autonomous vehicles provides a decision basis for its control. In this paper, we present two prediction models (i.e. ARLP model and Advanced ARLP model) based on two system environments that only the current day's historical data is available or several days' historical data are available. These two models jointly consider the spatial, temporal, and semantic relations. Spatial dependency is captured with residual network and dimension reduction. Short term temporal dependency is captured with LSTM. Long term temporal dependency and temporal shifting are captured with LSTM and attention mechanism. Semantic dependency is captured with multi-attention mechanism. Extensive experiments show that our frameworks provide more accurate prediction results than the existing methods.\",\"PeriodicalId\":166126,\"journal\":{\"name\":\"2019 20th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 20th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PDCAT46702.2019.00085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 20th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDCAT46702.2019.00085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Attention-Based Supply-Demand Prediction for Autonomous Vehicles
As one of the important functions of the intelligent transportation system (ITS), supply-demand prediction for autonomous vehicles provides a decision basis for its control. In this paper, we present two prediction models (i.e. ARLP model and Advanced ARLP model) based on two system environments that only the current day's historical data is available or several days' historical data are available. These two models jointly consider the spatial, temporal, and semantic relations. Spatial dependency is captured with residual network and dimension reduction. Short term temporal dependency is captured with LSTM. Long term temporal dependency and temporal shifting are captured with LSTM and attention mechanism. Semantic dependency is captured with multi-attention mechanism. Extensive experiments show that our frameworks provide more accurate prediction results than the existing methods.