基于脑电图和近红外光谱的多模态运动图像脑机接口

Ivaylo Ivaylov, Milena Lazarova, A. Manolova
{"title":"基于脑电图和近红外光谱的多模态运动图像脑机接口","authors":"Ivaylo Ivaylov, Milena Lazarova, A. Manolova","doi":"10.1109/ICEST52640.2021.9483551","DOIUrl":null,"url":null,"abstract":"Brain-computer interface comprises technologies for brain activity identification used in many application fields such as motor imagery, disease or mental state detection. Multimodal approach that utilizes hybrid data can be improve motor imagery classification. The paper explores utilization of several classification techniques for multimodal electroencephalography (EEG) and near-infrared spectroscopy (NIRS) data classification in motor imagery BCI. Five classifiers used in the evaluation are Logistic Regression, K-Nearest Neighbours, Support Vector Machines, Linear Regression, SVC Radial Basis Regression and their performance is compared on EEG and EEG+NIRS datasets for motor imagery tasks classification.","PeriodicalId":308948,"journal":{"name":"2021 56th International Scientific Conference on Information, Communication and Energy Systems and Technologies (ICEST)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multimodal Motor Imagery BCI Based on EEG and NIRS\",\"authors\":\"Ivaylo Ivaylov, Milena Lazarova, A. Manolova\",\"doi\":\"10.1109/ICEST52640.2021.9483551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Brain-computer interface comprises technologies for brain activity identification used in many application fields such as motor imagery, disease or mental state detection. Multimodal approach that utilizes hybrid data can be improve motor imagery classification. The paper explores utilization of several classification techniques for multimodal electroencephalography (EEG) and near-infrared spectroscopy (NIRS) data classification in motor imagery BCI. Five classifiers used in the evaluation are Logistic Regression, K-Nearest Neighbours, Support Vector Machines, Linear Regression, SVC Radial Basis Regression and their performance is compared on EEG and EEG+NIRS datasets for motor imagery tasks classification.\",\"PeriodicalId\":308948,\"journal\":{\"name\":\"2021 56th International Scientific Conference on Information, Communication and Energy Systems and Technologies (ICEST)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 56th International Scientific Conference on Information, Communication and Energy Systems and Technologies (ICEST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEST52640.2021.9483551\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 56th International Scientific Conference on Information, Communication and Energy Systems and Technologies (ICEST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEST52640.2021.9483551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

脑机接口包括脑活动识别技术,用于许多应用领域,如运动图像,疾病或精神状态检测。利用混合数据的多模态方法可以改善运动意象分类。本文探讨了多模态脑电图(EEG)和近红外光谱(NIRS)数据分类技术在运动图像脑机接口(BCI)中的应用。评估中使用的五种分类器分别是Logistic回归、k近邻、支持向量机、线性回归、SVC径向基回归,并比较了它们在EEG和EEG+NIRS数据集上用于运动图像任务分类的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multimodal Motor Imagery BCI Based on EEG and NIRS
Brain-computer interface comprises technologies for brain activity identification used in many application fields such as motor imagery, disease or mental state detection. Multimodal approach that utilizes hybrid data can be improve motor imagery classification. The paper explores utilization of several classification techniques for multimodal electroencephalography (EEG) and near-infrared spectroscopy (NIRS) data classification in motor imagery BCI. Five classifiers used in the evaluation are Logistic Regression, K-Nearest Neighbours, Support Vector Machines, Linear Regression, SVC Radial Basis Regression and their performance is compared on EEG and EEG+NIRS datasets for motor imagery tasks classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信