SecKG:利用知识图进行攻击检测和预测

Siwar Kriaa, Yahia Chaabane
{"title":"SecKG:利用知识图进行攻击检测和预测","authors":"Siwar Kriaa, Yahia Chaabane","doi":"10.1109/ICICS52457.2021.9464587","DOIUrl":null,"url":null,"abstract":"Advanced persistent threats targeting sensitive corporations, are becoming today stealthier and more complex, coordinating different attacks steps and lateral movements, and trying to stay undetected for long time. Classical security solutions that rely on signature-based detection can be easily thwarted by malware using obfuscation and encryption techniques. More recent solutions are using machine learning approaches for detecting outliers. Nevertheless, the majority of them reason on tabular unstructured data which can lead to missing obvious conclusions. We propose in this paper a novel approach that leverages a combination of both knowledge graphs and machine learning techniques to detect and predict attacks. Using Cyber Threat Intelligence (CTI), we built a knowledge graph that processes event logs in order to not only detect attack techniques, but also learn how to predict them.","PeriodicalId":421803,"journal":{"name":"2021 12th International Conference on Information and Communication Systems (ICICS)","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"SecKG: Leveraging attack detection and prediction using knowledge graphs\",\"authors\":\"Siwar Kriaa, Yahia Chaabane\",\"doi\":\"10.1109/ICICS52457.2021.9464587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advanced persistent threats targeting sensitive corporations, are becoming today stealthier and more complex, coordinating different attacks steps and lateral movements, and trying to stay undetected for long time. Classical security solutions that rely on signature-based detection can be easily thwarted by malware using obfuscation and encryption techniques. More recent solutions are using machine learning approaches for detecting outliers. Nevertheless, the majority of them reason on tabular unstructured data which can lead to missing obvious conclusions. We propose in this paper a novel approach that leverages a combination of both knowledge graphs and machine learning techniques to detect and predict attacks. Using Cyber Threat Intelligence (CTI), we built a knowledge graph that processes event logs in order to not only detect attack techniques, but also learn how to predict them.\",\"PeriodicalId\":421803,\"journal\":{\"name\":\"2021 12th International Conference on Information and Communication Systems (ICICS)\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 12th International Conference on Information and Communication Systems (ICICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICS52457.2021.9464587\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 12th International Conference on Information and Communication Systems (ICICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICS52457.2021.9464587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

针对敏感企业的高级持续性威胁,如今变得更加隐蔽和复杂,协调不同的攻击步骤和横向移动,并试图长时间不被发现。依赖于基于签名的检测的经典安全解决方案很容易被使用混淆和加密技术的恶意软件所挫败。最近的解决方案是使用机器学习方法来检测异常值。然而,他们中的大多数都是基于表格式的非结构化数据进行推理,这可能会导致缺少明显的结论。我们在本文中提出了一种利用知识图和机器学习技术相结合来检测和预测攻击的新方法。利用网络威胁情报(CTI),我们建立了一个知识图,处理事件日志,不仅可以检测攻击技术,还可以学习如何预测它们。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SecKG: Leveraging attack detection and prediction using knowledge graphs
Advanced persistent threats targeting sensitive corporations, are becoming today stealthier and more complex, coordinating different attacks steps and lateral movements, and trying to stay undetected for long time. Classical security solutions that rely on signature-based detection can be easily thwarted by malware using obfuscation and encryption techniques. More recent solutions are using machine learning approaches for detecting outliers. Nevertheless, the majority of them reason on tabular unstructured data which can lead to missing obvious conclusions. We propose in this paper a novel approach that leverages a combination of both knowledge graphs and machine learning techniques to detect and predict attacks. Using Cyber Threat Intelligence (CTI), we built a knowledge graph that processes event logs in order to not only detect attack techniques, but also learn how to predict them.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信