超薄硅纳米线器件的晶圆级制造

P. Tran, B. Wolfrum, R. Stockmann, A. Offenhausser, B. Thierry
{"title":"超薄硅纳米线器件的晶圆级制造","authors":"P. Tran, B. Wolfrum, R. Stockmann, A. Offenhausser, B. Thierry","doi":"10.1109/NANO.2013.6720826","DOIUrl":null,"url":null,"abstract":"We present a robust wafer-scale top-down process for the fabrication of locally thinned-downed silicon nanowire (SiNW) devices. The fabrication is based on electron-beam lithography in combination with a two-step tetramethylammonium hydroxide (TMAH) wet etch. We optimized the etching profile of the TMAH process on silicon-on-insulator <;100> using isopropanol additive and temperature regulation, yielding very low and controllable etching rates and enabling the formation of ultra-smooth silicon morphology. The optimized TMAH etching process was confined using photolithography to the middle sections of silicon nanowire channels to achieve localized step-etching of the nanowires. The thinned silicon nanowires were addressed via metal contact lines in the final step of the fabrication. Preliminary current-voltage characterization in liquid demonstrated a p-channel field effect transistor behavior in depletion mode with a very high output current and negligible contact resistance. The proposed process provides an alternative route for reliable and reproducible fabrication of ultra-thin silicon nanowire devices.","PeriodicalId":189707,"journal":{"name":"2013 13th IEEE International Conference on Nanotechnology (IEEE-NANO 2013)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Wafer-scale fabrication of ultra-thin silicon nanowire devices\",\"authors\":\"P. Tran, B. Wolfrum, R. Stockmann, A. Offenhausser, B. Thierry\",\"doi\":\"10.1109/NANO.2013.6720826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a robust wafer-scale top-down process for the fabrication of locally thinned-downed silicon nanowire (SiNW) devices. The fabrication is based on electron-beam lithography in combination with a two-step tetramethylammonium hydroxide (TMAH) wet etch. We optimized the etching profile of the TMAH process on silicon-on-insulator <;100> using isopropanol additive and temperature regulation, yielding very low and controllable etching rates and enabling the formation of ultra-smooth silicon morphology. The optimized TMAH etching process was confined using photolithography to the middle sections of silicon nanowire channels to achieve localized step-etching of the nanowires. The thinned silicon nanowires were addressed via metal contact lines in the final step of the fabrication. Preliminary current-voltage characterization in liquid demonstrated a p-channel field effect transistor behavior in depletion mode with a very high output current and negligible contact resistance. The proposed process provides an alternative route for reliable and reproducible fabrication of ultra-thin silicon nanowire devices.\",\"PeriodicalId\":189707,\"journal\":{\"name\":\"2013 13th IEEE International Conference on Nanotechnology (IEEE-NANO 2013)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 13th IEEE International Conference on Nanotechnology (IEEE-NANO 2013)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NANO.2013.6720826\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 13th IEEE International Conference on Nanotechnology (IEEE-NANO 2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2013.6720826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一种强大的晶圆级自顶向下工艺,用于制造局部薄化硅纳米线(SiNW)器件。制造是基于电子束光刻结合两步四甲基氢氧化铵(TMAH)湿蚀刻。我们使用异丙醇添加剂和温度调节优化了TMAH工艺在绝缘体上硅的蚀刻轮廓,得到了非常低和可控的蚀刻速率,并实现了超光滑硅形貌的形成。优化的TMAH蚀刻工艺采用光刻技术限制在硅纳米线通道的中间部分,以实现纳米线的局部步进蚀刻。在制造的最后一步,通过金属接触线对变细的硅纳米线进行定位。液体中初步的电流-电压特性证明了p沟道场效应晶体管在耗尽模式下具有非常高的输出电流和可以忽略不计的接触电阻。所提出的工艺为超薄硅纳米线器件的可靠和可重复性制造提供了另一种途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wafer-scale fabrication of ultra-thin silicon nanowire devices
We present a robust wafer-scale top-down process for the fabrication of locally thinned-downed silicon nanowire (SiNW) devices. The fabrication is based on electron-beam lithography in combination with a two-step tetramethylammonium hydroxide (TMAH) wet etch. We optimized the etching profile of the TMAH process on silicon-on-insulator <;100> using isopropanol additive and temperature regulation, yielding very low and controllable etching rates and enabling the formation of ultra-smooth silicon morphology. The optimized TMAH etching process was confined using photolithography to the middle sections of silicon nanowire channels to achieve localized step-etching of the nanowires. The thinned silicon nanowires were addressed via metal contact lines in the final step of the fabrication. Preliminary current-voltage characterization in liquid demonstrated a p-channel field effect transistor behavior in depletion mode with a very high output current and negligible contact resistance. The proposed process provides an alternative route for reliable and reproducible fabrication of ultra-thin silicon nanowire devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信