HTML模式生成器——从网页中自动提取数据

M. Cosulschi, A. Giurca, Bogdan Udrescu, N. Constantinescu, M. Gabroveanu
{"title":"HTML模式生成器——从网页中自动提取数据","authors":"M. Cosulschi, A. Giurca, Bogdan Udrescu, N. Constantinescu, M. Gabroveanu","doi":"10.1109/SYNASC.2006.43","DOIUrl":null,"url":null,"abstract":"Existing methods of information extraction from HTML documents include manual approach, supervised learning and automatic techniques. The manual method has high precision and recall values but it is difficult to apply it for large number of pages. Supervised learning involves human interaction to create positive and negative samples. Automatic techniques benefit from less human effort but they are not highly reliable regarding the information retrieved","PeriodicalId":309740,"journal":{"name":"2006 Eighth International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"HTML Pattern Generator--Automatic Data Extraction from Web Pages\",\"authors\":\"M. Cosulschi, A. Giurca, Bogdan Udrescu, N. Constantinescu, M. Gabroveanu\",\"doi\":\"10.1109/SYNASC.2006.43\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing methods of information extraction from HTML documents include manual approach, supervised learning and automatic techniques. The manual method has high precision and recall values but it is difficult to apply it for large number of pages. Supervised learning involves human interaction to create positive and negative samples. Automatic techniques benefit from less human effort but they are not highly reliable regarding the information retrieved\",\"PeriodicalId\":309740,\"journal\":{\"name\":\"2006 Eighth International Symposium on Symbolic and Numeric Algorithms for Scientific Computing\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 Eighth International Symposium on Symbolic and Numeric Algorithms for Scientific Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC.2006.43\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 Eighth International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2006.43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

现有的从HTML文档中提取信息的方法包括人工方法、监督学习和自动技术。手工方法具有较高的查全率和查全率,但难以适用于大量的页数。监督式学习涉及人类互动,以创造积极和消极的样本。自动化技术受益于较少的人力,但它们在检索信息方面不是高度可靠的
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HTML Pattern Generator--Automatic Data Extraction from Web Pages
Existing methods of information extraction from HTML documents include manual approach, supervised learning and automatic techniques. The manual method has high precision and recall values but it is difficult to apply it for large number of pages. Supervised learning involves human interaction to create positive and negative samples. Automatic techniques benefit from less human effort but they are not highly reliable regarding the information retrieved
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信