Pedro Antonio Gutiérrez, C. Hervás‐Martínez, F. Martínez-Estudillo, Mariano Carbonero-Ruz
{"title":"按产品单位进行多元逻辑回归","authors":"Pedro Antonio Gutiérrez, C. Hervás‐Martínez, F. Martínez-Estudillo, Mariano Carbonero-Ruz","doi":"10.4018/978-1-59904-849-9.CH166","DOIUrl":null,"url":null,"abstract":"Multi-class pattern recognition has a wide range of applications including handwritten digit recognition (Chiang, 1998), speech tagging and recognition (Athanaselis, Bakamidis, Dologlou, Cowie, Douglas-Cowie & Cox, 2005), bioinformatics (Mahony, Benos, Smith & Golden, 2006) and text categorization (Massey, 2003). This chapter presents a comprehensive and competitive study in multi-class neural learning which combines different elements, such as multilogistic regression, neural networks and evolutionary algorithms. The Logistic Regression model (LR) has been widely used in statistics for many years and has recently been the object of extensive study in the machine learning community. Although logistic regression is a simple and useful procedure, it poses problems when is applied to a real-problem of classification, where frequently we cannot make the stringent assumption of additive and purely linear effects of the covariates. A technique to overcome these difficulties is to augment/replace the input vector with new variables, basis functions, which are transformations of the input variables, and then to use linear models in this new space of derived input features. Methods like sigmoidal feed-forward neural networks (Bishop, 1995), generalized additive models (Hastie & Tibshirani, 1990), and PolyMARS (Kooperberg, Bose & Stone, 1997), which is a hybrid of Multivariate Adaptive Regression Splines (MARS) (Friedman, 1991) specifically designed to handle classification problems, can all be seen as different nonlinear basis function models. The major drawback of these approaches is stating the typology and the optimal number of the corresponding basis functions. Logistic regression models are usually fit by maximum likelihood, where the Newton-Raphson algorithm is the traditional way to estimate the maximum likelihood a-posteriori parameters. Typically, the algorithm converges, since the log-likelihood is concave. It is important to point out that the computation of the Newton-Raphson algorithm becomes prohibitive when the number of variables is large. Product Unit Neural Networks, PUNN, introduced by Durbin and Rumelhart (Durbin & Rumelhart, 1989), are an alternative to standard sigmoidal neural networks and are based on multiplicative nodes instead of additive ones.","PeriodicalId":320314,"journal":{"name":"Encyclopedia of Artificial Intelligence","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multilogistic Regression by Product Units\",\"authors\":\"Pedro Antonio Gutiérrez, C. Hervás‐Martínez, F. Martínez-Estudillo, Mariano Carbonero-Ruz\",\"doi\":\"10.4018/978-1-59904-849-9.CH166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-class pattern recognition has a wide range of applications including handwritten digit recognition (Chiang, 1998), speech tagging and recognition (Athanaselis, Bakamidis, Dologlou, Cowie, Douglas-Cowie & Cox, 2005), bioinformatics (Mahony, Benos, Smith & Golden, 2006) and text categorization (Massey, 2003). This chapter presents a comprehensive and competitive study in multi-class neural learning which combines different elements, such as multilogistic regression, neural networks and evolutionary algorithms. The Logistic Regression model (LR) has been widely used in statistics for many years and has recently been the object of extensive study in the machine learning community. Although logistic regression is a simple and useful procedure, it poses problems when is applied to a real-problem of classification, where frequently we cannot make the stringent assumption of additive and purely linear effects of the covariates. A technique to overcome these difficulties is to augment/replace the input vector with new variables, basis functions, which are transformations of the input variables, and then to use linear models in this new space of derived input features. Methods like sigmoidal feed-forward neural networks (Bishop, 1995), generalized additive models (Hastie & Tibshirani, 1990), and PolyMARS (Kooperberg, Bose & Stone, 1997), which is a hybrid of Multivariate Adaptive Regression Splines (MARS) (Friedman, 1991) specifically designed to handle classification problems, can all be seen as different nonlinear basis function models. The major drawback of these approaches is stating the typology and the optimal number of the corresponding basis functions. Logistic regression models are usually fit by maximum likelihood, where the Newton-Raphson algorithm is the traditional way to estimate the maximum likelihood a-posteriori parameters. Typically, the algorithm converges, since the log-likelihood is concave. It is important to point out that the computation of the Newton-Raphson algorithm becomes prohibitive when the number of variables is large. Product Unit Neural Networks, PUNN, introduced by Durbin and Rumelhart (Durbin & Rumelhart, 1989), are an alternative to standard sigmoidal neural networks and are based on multiplicative nodes instead of additive ones.\",\"PeriodicalId\":320314,\"journal\":{\"name\":\"Encyclopedia of Artificial Intelligence\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Encyclopedia of Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/978-1-59904-849-9.CH166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Encyclopedia of Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-59904-849-9.CH166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-class pattern recognition has a wide range of applications including handwritten digit recognition (Chiang, 1998), speech tagging and recognition (Athanaselis, Bakamidis, Dologlou, Cowie, Douglas-Cowie & Cox, 2005), bioinformatics (Mahony, Benos, Smith & Golden, 2006) and text categorization (Massey, 2003). This chapter presents a comprehensive and competitive study in multi-class neural learning which combines different elements, such as multilogistic regression, neural networks and evolutionary algorithms. The Logistic Regression model (LR) has been widely used in statistics for many years and has recently been the object of extensive study in the machine learning community. Although logistic regression is a simple and useful procedure, it poses problems when is applied to a real-problem of classification, where frequently we cannot make the stringent assumption of additive and purely linear effects of the covariates. A technique to overcome these difficulties is to augment/replace the input vector with new variables, basis functions, which are transformations of the input variables, and then to use linear models in this new space of derived input features. Methods like sigmoidal feed-forward neural networks (Bishop, 1995), generalized additive models (Hastie & Tibshirani, 1990), and PolyMARS (Kooperberg, Bose & Stone, 1997), which is a hybrid of Multivariate Adaptive Regression Splines (MARS) (Friedman, 1991) specifically designed to handle classification problems, can all be seen as different nonlinear basis function models. The major drawback of these approaches is stating the typology and the optimal number of the corresponding basis functions. Logistic regression models are usually fit by maximum likelihood, where the Newton-Raphson algorithm is the traditional way to estimate the maximum likelihood a-posteriori parameters. Typically, the algorithm converges, since the log-likelihood is concave. It is important to point out that the computation of the Newton-Raphson algorithm becomes prohibitive when the number of variables is large. Product Unit Neural Networks, PUNN, introduced by Durbin and Rumelhart (Durbin & Rumelhart, 1989), are an alternative to standard sigmoidal neural networks and are based on multiplicative nodes instead of additive ones.