广义直升机控制的神经进化强化学习

Rogier Koppejan, Shimon Whiteson
{"title":"广义直升机控制的神经进化强化学习","authors":"Rogier Koppejan, Shimon Whiteson","doi":"10.1145/1569901.1569922","DOIUrl":null,"url":null,"abstract":"Helicopter hovering is an important challenge problem in the field of reinforcement learning. This paper considers several neuroevolutionary approaches to discovering robust controllers for a generalized version of the problem used in the 2008 Reinforcement Learning Competition, in which wind in the helicopter's environment varies from run to run. We present the simple model-free strategy that won first place in the competition and also describe several more complex model-based approaches. Our empirical results demonstrate that neuroevolution is effective at optimizing the weights of multi-layer perceptrons, that linear regression is faster and more effective than evolution for learning models, and that model-based approaches can outperform the simple model-free strategy, especially if prior knowledge is used to aid model learning.","PeriodicalId":193093,"journal":{"name":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":"{\"title\":\"Neuroevolutionary reinforcement learning for generalized helicopter control\",\"authors\":\"Rogier Koppejan, Shimon Whiteson\",\"doi\":\"10.1145/1569901.1569922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Helicopter hovering is an important challenge problem in the field of reinforcement learning. This paper considers several neuroevolutionary approaches to discovering robust controllers for a generalized version of the problem used in the 2008 Reinforcement Learning Competition, in which wind in the helicopter's environment varies from run to run. We present the simple model-free strategy that won first place in the competition and also describe several more complex model-based approaches. Our empirical results demonstrate that neuroevolution is effective at optimizing the weights of multi-layer perceptrons, that linear regression is faster and more effective than evolution for learning models, and that model-based approaches can outperform the simple model-free strategy, especially if prior knowledge is used to aid model learning.\",\"PeriodicalId\":193093,\"journal\":{\"name\":\"Proceedings of the 11th Annual conference on Genetic and evolutionary computation\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th Annual conference on Genetic and evolutionary computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1569901.1569922\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1569901.1569922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

摘要

直升机悬停是强化学习领域的一个重要挑战问题。本文考虑了几种神经进化方法来发现鲁棒控制器,用于2008年强化学习竞赛中使用的问题的广义版本,其中直升机环境中的风因运行而异。我们提出了在竞赛中获得第一名的简单的无模型策略,并描述了几种更复杂的基于模型的方法。我们的实证结果表明,神经进化在优化多层感知器的权重方面是有效的,线性回归在学习模型方面比进化更快更有效,基于模型的方法可以优于简单的无模型策略,特别是如果使用先验知识来帮助模型学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neuroevolutionary reinforcement learning for generalized helicopter control
Helicopter hovering is an important challenge problem in the field of reinforcement learning. This paper considers several neuroevolutionary approaches to discovering robust controllers for a generalized version of the problem used in the 2008 Reinforcement Learning Competition, in which wind in the helicopter's environment varies from run to run. We present the simple model-free strategy that won first place in the competition and also describe several more complex model-based approaches. Our empirical results demonstrate that neuroevolution is effective at optimizing the weights of multi-layer perceptrons, that linear regression is faster and more effective than evolution for learning models, and that model-based approaches can outperform the simple model-free strategy, especially if prior knowledge is used to aid model learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信