{"title":"LSTM网络在智能工业预测性维护中的应用","authors":"Dario Bruneo, Fabrizio De Vita","doi":"10.1109/SMARTCOMP.2019.00059","DOIUrl":null,"url":null,"abstract":"Aspects related to the maintenance scheduling have become a crucial problem especially in those sectors where the fault of a component can compromise the operation of the entire system, or the life of a human being. Current systems have the ability to warn only when the failure has occurred causing, in the worst case, an offline period that can cost a lot in terms of money, time, and security. Recently, new ways to address the problem have been proposed thanks to the support of machine learning techniques, with the aim to predict the Remaining Useful Life (RUL) of a system by correlating the data coming from a set of sensors attached to several components. In this paper, we present a machine learning approach by using LSTM networks in order to demonstrate that they can be considered a feasible technique to analyze the \"history\" of a system in order to predict the RUL. Moreover, we propose a technique for the tuning of LSTM networks hyperparameters. In order to train the models, we used a dataset provided by NASA containing a set of sensors measurements of jet engines. Finally, we show the results and make comparisons with other machine learning techniques and models we found in the literature.","PeriodicalId":253364,"journal":{"name":"2019 IEEE International Conference on Smart Computing (SMARTCOMP)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"On the Use of LSTM Networks for Predictive Maintenance in Smart Industries\",\"authors\":\"Dario Bruneo, Fabrizio De Vita\",\"doi\":\"10.1109/SMARTCOMP.2019.00059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aspects related to the maintenance scheduling have become a crucial problem especially in those sectors where the fault of a component can compromise the operation of the entire system, or the life of a human being. Current systems have the ability to warn only when the failure has occurred causing, in the worst case, an offline period that can cost a lot in terms of money, time, and security. Recently, new ways to address the problem have been proposed thanks to the support of machine learning techniques, with the aim to predict the Remaining Useful Life (RUL) of a system by correlating the data coming from a set of sensors attached to several components. In this paper, we present a machine learning approach by using LSTM networks in order to demonstrate that they can be considered a feasible technique to analyze the \\\"history\\\" of a system in order to predict the RUL. Moreover, we propose a technique for the tuning of LSTM networks hyperparameters. In order to train the models, we used a dataset provided by NASA containing a set of sensors measurements of jet engines. Finally, we show the results and make comparisons with other machine learning techniques and models we found in the literature.\",\"PeriodicalId\":253364,\"journal\":{\"name\":\"2019 IEEE International Conference on Smart Computing (SMARTCOMP)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Smart Computing (SMARTCOMP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMARTCOMP.2019.00059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Smart Computing (SMARTCOMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMARTCOMP.2019.00059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the Use of LSTM Networks for Predictive Maintenance in Smart Industries
Aspects related to the maintenance scheduling have become a crucial problem especially in those sectors where the fault of a component can compromise the operation of the entire system, or the life of a human being. Current systems have the ability to warn only when the failure has occurred causing, in the worst case, an offline period that can cost a lot in terms of money, time, and security. Recently, new ways to address the problem have been proposed thanks to the support of machine learning techniques, with the aim to predict the Remaining Useful Life (RUL) of a system by correlating the data coming from a set of sensors attached to several components. In this paper, we present a machine learning approach by using LSTM networks in order to demonstrate that they can be considered a feasible technique to analyze the "history" of a system in order to predict the RUL. Moreover, we propose a technique for the tuning of LSTM networks hyperparameters. In order to train the models, we used a dataset provided by NASA containing a set of sensors measurements of jet engines. Finally, we show the results and make comparisons with other machine learning techniques and models we found in the literature.