基于荧光成像的卡尔曼滤波三维空间漂移校正

Thierry Dorval, C. Moraes, Arnaud Ogier, Lucio Freitas Junior, Auguste Genovesio
{"title":"基于荧光成像的卡尔曼滤波三维空间漂移校正","authors":"Thierry Dorval, C. Moraes, Arnaud Ogier, Lucio Freitas Junior, Auguste Genovesio","doi":"10.1109/ISBI.2009.5193253","DOIUrl":null,"url":null,"abstract":"In this paper we present a framework for correcting the spatial drift that can occur in 3D optical fluorescence microscopy images. These shifts happen during long time acquisition and can corrupt further analysis. This artifact has to be taken into account especially if the application requires an high spatial detection accuracy. Our correction method is based on the use of a microsphere located within the biological assay. As the bead does not provide the same correction quality for each Z-slice, we propose here, to include a level of confidence depending on the depth in a Kalman filtering process. This framework allows then to extend the motion compensation along the complete 3D images. This method is validated on real data and provides an easy and accurate way to correct 3D images corrupted along Z by a XY motion.","PeriodicalId":272938,"journal":{"name":"2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"3D spatial drift correction using Kalman filtering for fluorescence based imaging\",\"authors\":\"Thierry Dorval, C. Moraes, Arnaud Ogier, Lucio Freitas Junior, Auguste Genovesio\",\"doi\":\"10.1109/ISBI.2009.5193253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a framework for correcting the spatial drift that can occur in 3D optical fluorescence microscopy images. These shifts happen during long time acquisition and can corrupt further analysis. This artifact has to be taken into account especially if the application requires an high spatial detection accuracy. Our correction method is based on the use of a microsphere located within the biological assay. As the bead does not provide the same correction quality for each Z-slice, we propose here, to include a level of confidence depending on the depth in a Kalman filtering process. This framework allows then to extend the motion compensation along the complete 3D images. This method is validated on real data and provides an easy and accurate way to correct 3D images corrupted along Z by a XY motion.\",\"PeriodicalId\":272938,\"journal\":{\"name\":\"2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2009.5193253\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2009.5193253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们提出了一个框架来纠正空间漂移,可以发生在三维光学荧光显微镜图像。这些变化发生在长时间的获取过程中,可能会影响进一步的分析。必须考虑到这个工件,特别是当应用程序需要高空间检测精度时。我们的校正方法是基于在生物测定中使用微球。由于头部不能为每个z片提供相同的校正质量,我们在这里建议,根据卡尔曼滤波过程的深度包括一个置信度水平。这个框架允许然后沿着完整的3D图像扩展运动补偿。该方法在实际数据上进行了验证,提供了一种简便、准确的方法来校正由XY运动沿Z方向损坏的三维图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D spatial drift correction using Kalman filtering for fluorescence based imaging
In this paper we present a framework for correcting the spatial drift that can occur in 3D optical fluorescence microscopy images. These shifts happen during long time acquisition and can corrupt further analysis. This artifact has to be taken into account especially if the application requires an high spatial detection accuracy. Our correction method is based on the use of a microsphere located within the biological assay. As the bead does not provide the same correction quality for each Z-slice, we propose here, to include a level of confidence depending on the depth in a Kalman filtering process. This framework allows then to extend the motion compensation along the complete 3D images. This method is validated on real data and provides an easy and accurate way to correct 3D images corrupted along Z by a XY motion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信