我应该遵循这种模式吗?不确定性可视化对时间序列预测可接受性的影响

Dirk Leffrang, Oliver Müller
{"title":"我应该遵循这种模式吗?不确定性可视化对时间序列预测可接受性的影响","authors":"Dirk Leffrang, Oliver Müller","doi":"10.1109/TREX53765.2021.00009","DOIUrl":null,"url":null,"abstract":"Time series forecasts are ubiquitous, ranging from daily weather forecasts to projections of pandemics such as COVID-19. Communicating the uncertainty associated with such forecasts is important, because it may affect users’ trust in a forecasting model and, in turn, the decisions made based on the model. Although there exists a growing body of research on visualizing uncertainty in general, the important case of visualizing prediction uncertainty in time series forecasting is under-researched. Against this background, we investigated how different visualizations of predictive uncertainty affect the extent to which people follow predictions of a time series forecasting model. More specifically, we conducted an online experiment on forecasting occupied hospital beds due to the COVID-19 pandemic, measuring the influence of uncertainty visualization of algorithmic predictions on participants’ own predictions. In contrast to prior studies, our empirical results suggest that more salient visualizations of uncertainty lead to decreased willingness to follow algorithmic forecasts.","PeriodicalId":345585,"journal":{"name":"2021 IEEE Workshop on TRust and EXpertise in Visual Analytics (TREX)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Should I Follow this Model? The Effect of Uncertainty Visualization on the Acceptance of Time Series Forecasts\",\"authors\":\"Dirk Leffrang, Oliver Müller\",\"doi\":\"10.1109/TREX53765.2021.00009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Time series forecasts are ubiquitous, ranging from daily weather forecasts to projections of pandemics such as COVID-19. Communicating the uncertainty associated with such forecasts is important, because it may affect users’ trust in a forecasting model and, in turn, the decisions made based on the model. Although there exists a growing body of research on visualizing uncertainty in general, the important case of visualizing prediction uncertainty in time series forecasting is under-researched. Against this background, we investigated how different visualizations of predictive uncertainty affect the extent to which people follow predictions of a time series forecasting model. More specifically, we conducted an online experiment on forecasting occupied hospital beds due to the COVID-19 pandemic, measuring the influence of uncertainty visualization of algorithmic predictions on participants’ own predictions. In contrast to prior studies, our empirical results suggest that more salient visualizations of uncertainty lead to decreased willingness to follow algorithmic forecasts.\",\"PeriodicalId\":345585,\"journal\":{\"name\":\"2021 IEEE Workshop on TRust and EXpertise in Visual Analytics (TREX)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Workshop on TRust and EXpertise in Visual Analytics (TREX)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TREX53765.2021.00009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Workshop on TRust and EXpertise in Visual Analytics (TREX)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TREX53765.2021.00009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

时间序列预测无处不在,从每日天气预报到COVID-19等流行病的预测。传达与此类预测相关的不确定性是很重要的,因为它可能会影响用户对预测模型的信任,进而影响基于该模型做出的决策。尽管对不确定性可视化的研究越来越多,但对时间序列预测中预测不确定性可视化这一重要案例的研究还不够。在此背景下,我们研究了预测不确定性的不同可视化如何影响人们遵循时间序列预测模型预测的程度。更具体地说,我们进行了一项在线实验,预测因COVID-19大流行而占用的医院床位,测量算法预测的不确定性可视化对参与者自己预测的影响。与之前的研究相比,我们的实证结果表明,不确定性的可视化程度越高,遵循算法预测的意愿就越低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Should I Follow this Model? The Effect of Uncertainty Visualization on the Acceptance of Time Series Forecasts
Time series forecasts are ubiquitous, ranging from daily weather forecasts to projections of pandemics such as COVID-19. Communicating the uncertainty associated with such forecasts is important, because it may affect users’ trust in a forecasting model and, in turn, the decisions made based on the model. Although there exists a growing body of research on visualizing uncertainty in general, the important case of visualizing prediction uncertainty in time series forecasting is under-researched. Against this background, we investigated how different visualizations of predictive uncertainty affect the extent to which people follow predictions of a time series forecasting model. More specifically, we conducted an online experiment on forecasting occupied hospital beds due to the COVID-19 pandemic, measuring the influence of uncertainty visualization of algorithmic predictions on participants’ own predictions. In contrast to prior studies, our empirical results suggest that more salient visualizations of uncertainty lead to decreased willingness to follow algorithmic forecasts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信