在线电池状态估计的混合观测器设计

J. LeSage, R. Longoria
{"title":"在线电池状态估计的混合观测器设计","authors":"J. LeSage, R. Longoria","doi":"10.1109/ACC.2013.6580128","DOIUrl":null,"url":null,"abstract":"This paper presents a method for estimating battery state-of-charge based on linear hybrid estimation theory. Contrasting with existing battery estimation techniques, hybrid linear models permit systematic introduction of additional dynamics online, which can capture cell aging or temperature effects. Piecewise regression with free-knots was employed to segment the nonlinear model into linear regions, enabling a decoupled hybrid observer scheme to independently identify the continuous and discrete hybrid states. Simulation and experimental studies demonstrate the observer efficacy.","PeriodicalId":145065,"journal":{"name":"2013 American Control Conference","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Hybrid observer design for online battery state-of-charge estimation\",\"authors\":\"J. LeSage, R. Longoria\",\"doi\":\"10.1109/ACC.2013.6580128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a method for estimating battery state-of-charge based on linear hybrid estimation theory. Contrasting with existing battery estimation techniques, hybrid linear models permit systematic introduction of additional dynamics online, which can capture cell aging or temperature effects. Piecewise regression with free-knots was employed to segment the nonlinear model into linear regions, enabling a decoupled hybrid observer scheme to independently identify the continuous and discrete hybrid states. Simulation and experimental studies demonstrate the observer efficacy.\",\"PeriodicalId\":145065,\"journal\":{\"name\":\"2013 American Control Conference\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 American Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACC.2013.6580128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2013.6580128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种基于线性混合估计理论的电池电量状态估计方法。与现有的电池估计技术相比,混合线性模型允许系统地在线引入额外的动态,可以捕获电池老化或温度效应。采用自由节分段回归将非线性模型分割成线性区域,使解耦混合观测器方案能够独立识别连续和离散混合状态。仿真和实验研究证明了观察者的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid observer design for online battery state-of-charge estimation
This paper presents a method for estimating battery state-of-charge based on linear hybrid estimation theory. Contrasting with existing battery estimation techniques, hybrid linear models permit systematic introduction of additional dynamics online, which can capture cell aging or temperature effects. Piecewise regression with free-knots was employed to segment the nonlinear model into linear regions, enabling a decoupled hybrid observer scheme to independently identify the continuous and discrete hybrid states. Simulation and experimental studies demonstrate the observer efficacy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信