基于不等错误保护的联邦学习编码传输

Qingya Lu, Rongchi Xu, Chang Liu, Shuangyang Li, B. Bai
{"title":"基于不等错误保护的联邦学习编码传输","authors":"Qingya Lu, Rongchi Xu, Chang Liu, Shuangyang Li, B. Bai","doi":"10.1109/ICCCWorkshops57813.2023.10233736","DOIUrl":null,"url":null,"abstract":"Effective data transmission plays a crucial role in federated learning (FL), which enables collaborative model training without centralizing data. This paper proposes a new coded transmission to enhance the communication quality for FL. The proposed coded transmission incorporates weight quantization, multilevel coding, set partitioning, and multi-stage decoding which are optimized to improve the FL performance. Furthermore, the unequal error protection (UEP) strategy is adopted in the proposed coded transmission, which allows the code rates to be optimized according to the significance of the quantized data. Simulation results demonstrate that the proposed UEP-based coded transmission outperforms conventional bit-interleaved coded modulation (BICM) scheme in terms of NMSE performance for FL, which, in return, improves the FL performance.","PeriodicalId":201450,"journal":{"name":"2023 IEEE/CIC International Conference on Communications in China (ICCC Workshops)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Unequal Error Protection-based Coded Transmission for Federated Learning\",\"authors\":\"Qingya Lu, Rongchi Xu, Chang Liu, Shuangyang Li, B. Bai\",\"doi\":\"10.1109/ICCCWorkshops57813.2023.10233736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Effective data transmission plays a crucial role in federated learning (FL), which enables collaborative model training without centralizing data. This paper proposes a new coded transmission to enhance the communication quality for FL. The proposed coded transmission incorporates weight quantization, multilevel coding, set partitioning, and multi-stage decoding which are optimized to improve the FL performance. Furthermore, the unequal error protection (UEP) strategy is adopted in the proposed coded transmission, which allows the code rates to be optimized according to the significance of the quantized data. Simulation results demonstrate that the proposed UEP-based coded transmission outperforms conventional bit-interleaved coded modulation (BICM) scheme in terms of NMSE performance for FL, which, in return, improves the FL performance.\",\"PeriodicalId\":201450,\"journal\":{\"name\":\"2023 IEEE/CIC International Conference on Communications in China (ICCC Workshops)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE/CIC International Conference on Communications in China (ICCC Workshops)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCWorkshops57813.2023.10233736\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CIC International Conference on Communications in China (ICCC Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCWorkshops57813.2023.10233736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

有效的数据传输在联邦学习(FL)中起着至关重要的作用,它可以在不集中数据的情况下实现协作模型训练。为了提高FL的通信质量,本文提出了一种新的编码传输方法,该方法采用了加权量化、多级编码、集分割和多级解码等方法,并对其进行了优化,提高了FL的通信性能。此外,在编码传输中采用不等错保护(UEP)策略,可以根据量化数据的重要程度优化码率。仿真结果表明,基于uep的编码传输在NMSE性能方面优于传统的比特交织编码调制(BICM)方案,从而提高了FL的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Unequal Error Protection-based Coded Transmission for Federated Learning
Effective data transmission plays a crucial role in federated learning (FL), which enables collaborative model training without centralizing data. This paper proposes a new coded transmission to enhance the communication quality for FL. The proposed coded transmission incorporates weight quantization, multilevel coding, set partitioning, and multi-stage decoding which are optimized to improve the FL performance. Furthermore, the unequal error protection (UEP) strategy is adopted in the proposed coded transmission, which allows the code rates to be optimized according to the significance of the quantized data. Simulation results demonstrate that the proposed UEP-based coded transmission outperforms conventional bit-interleaved coded modulation (BICM) scheme in terms of NMSE performance for FL, which, in return, improves the FL performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信