基于增量椭圆边界估计的无线传感器网络异常检测

Masud Moshtaghi, C. Leckie, S. Karunasekera, J. Bezdek, S. Rajasegarar, M. Palaniswami
{"title":"基于增量椭圆边界估计的无线传感器网络异常检测","authors":"Masud Moshtaghi, C. Leckie, S. Karunasekera, J. Bezdek, S. Rajasegarar, M. Palaniswami","doi":"10.1109/ICDM.2011.80","DOIUrl":null,"url":null,"abstract":"Wireless Sensor Networks (WSNs) provide a low cost option for gathering spatially dense data from different environments. However, WSNs have limited energy resources that hinder the dissemination of the raw data over the network to a central location. This has stimulated research into efficient data mining approaches, which can exploit the restricted computational capabilities of the sensors to model their normal behavior. Having a normal model of the network, sensors can then forward anomalous measurements to the base station. Most of the current data modeling approaches proposed for WSNs require a fixed offline training period and use batch training in contrast to the real streaming nature of data in these networks. In addition they usually work in stationary environments. In this paper we present an efficient online model construction algorithm that captures the normal behavior of the system. Our model is capable of tracking changes in the data distribution in the monitored environment. We illustrate the proposed algorithm with numerical results on both real-life and simulated data sets, which demonstrate the efficiency and accuracy of our approach compared to existing methods.","PeriodicalId":106216,"journal":{"name":"2011 IEEE 11th International Conference on Data Mining","volume":"276 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Incremental Elliptical Boundary Estimation for Anomaly Detection in Wireless Sensor Networks\",\"authors\":\"Masud Moshtaghi, C. Leckie, S. Karunasekera, J. Bezdek, S. Rajasegarar, M. Palaniswami\",\"doi\":\"10.1109/ICDM.2011.80\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wireless Sensor Networks (WSNs) provide a low cost option for gathering spatially dense data from different environments. However, WSNs have limited energy resources that hinder the dissemination of the raw data over the network to a central location. This has stimulated research into efficient data mining approaches, which can exploit the restricted computational capabilities of the sensors to model their normal behavior. Having a normal model of the network, sensors can then forward anomalous measurements to the base station. Most of the current data modeling approaches proposed for WSNs require a fixed offline training period and use batch training in contrast to the real streaming nature of data in these networks. In addition they usually work in stationary environments. In this paper we present an efficient online model construction algorithm that captures the normal behavior of the system. Our model is capable of tracking changes in the data distribution in the monitored environment. We illustrate the proposed algorithm with numerical results on both real-life and simulated data sets, which demonstrate the efficiency and accuracy of our approach compared to existing methods.\",\"PeriodicalId\":106216,\"journal\":{\"name\":\"2011 IEEE 11th International Conference on Data Mining\",\"volume\":\"276 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 11th International Conference on Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2011.80\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 11th International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2011.80","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

摘要

无线传感器网络(WSNs)为从不同环境中收集空间密集数据提供了一种低成本的选择。然而,无线传感器网络的能量资源有限,这阻碍了原始数据通过网络传播到中心位置。这刺激了对有效数据挖掘方法的研究,这些方法可以利用传感器有限的计算能力来模拟它们的正常行为。有了一个正常的网络模型,传感器就可以把异常的测量结果转发给基站。目前针对wsn提出的大多数数据建模方法都需要固定的离线训练周期,并且使用批处理训练,而不是这些网络中数据的真正流性质。此外,它们通常在固定的环境中工作。在本文中,我们提出了一种有效的在线模型构建算法来捕获系统的正常行为。我们的模型能够跟踪被监视环境中数据分布的变化。我们用实际和模拟数据集的数值结果来说明所提出的算法,与现有方法相比,证明了我们的方法的效率和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Incremental Elliptical Boundary Estimation for Anomaly Detection in Wireless Sensor Networks
Wireless Sensor Networks (WSNs) provide a low cost option for gathering spatially dense data from different environments. However, WSNs have limited energy resources that hinder the dissemination of the raw data over the network to a central location. This has stimulated research into efficient data mining approaches, which can exploit the restricted computational capabilities of the sensors to model their normal behavior. Having a normal model of the network, sensors can then forward anomalous measurements to the base station. Most of the current data modeling approaches proposed for WSNs require a fixed offline training period and use batch training in contrast to the real streaming nature of data in these networks. In addition they usually work in stationary environments. In this paper we present an efficient online model construction algorithm that captures the normal behavior of the system. Our model is capable of tracking changes in the data distribution in the monitored environment. We illustrate the proposed algorithm with numerical results on both real-life and simulated data sets, which demonstrate the efficiency and accuracy of our approach compared to existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信