{"title":"微处理器设计中的NBTI缓解","authors":"S. Corbetta, W. Fornaciari","doi":"10.1145/2206781.2206791","DOIUrl":null,"url":null,"abstract":"Negative-Bias Temperature Instability seriously affects nanoscale circuits reliability and performance. Continuous stress and increasing operating temperatures lead to device degradation and long-term system unavailability. The opportunity to optimize the duty-cycle of the stress/recovery phases to reduce Vth degradation leads to innovative research of reliability-oriented resources allocation at architectural level. This work explores the impact of different allocation strategies on the processor degradation, through a novel estimation methodology. Experimental results show that the proposed NBTI-aware allocation strategy can guarantee from 10% and up to 30% lower degradation compared to classical strategies, under different operating scenarios and under process variability.","PeriodicalId":272619,"journal":{"name":"ACM Great Lakes Symposium on VLSI","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"NBTI mitigation in microprocessor designs\",\"authors\":\"S. Corbetta, W. Fornaciari\",\"doi\":\"10.1145/2206781.2206791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Negative-Bias Temperature Instability seriously affects nanoscale circuits reliability and performance. Continuous stress and increasing operating temperatures lead to device degradation and long-term system unavailability. The opportunity to optimize the duty-cycle of the stress/recovery phases to reduce Vth degradation leads to innovative research of reliability-oriented resources allocation at architectural level. This work explores the impact of different allocation strategies on the processor degradation, through a novel estimation methodology. Experimental results show that the proposed NBTI-aware allocation strategy can guarantee from 10% and up to 30% lower degradation compared to classical strategies, under different operating scenarios and under process variability.\",\"PeriodicalId\":272619,\"journal\":{\"name\":\"ACM Great Lakes Symposium on VLSI\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Great Lakes Symposium on VLSI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2206781.2206791\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Great Lakes Symposium on VLSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2206781.2206791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Negative-Bias Temperature Instability seriously affects nanoscale circuits reliability and performance. Continuous stress and increasing operating temperatures lead to device degradation and long-term system unavailability. The opportunity to optimize the duty-cycle of the stress/recovery phases to reduce Vth degradation leads to innovative research of reliability-oriented resources allocation at architectural level. This work explores the impact of different allocation strategies on the processor degradation, through a novel estimation methodology. Experimental results show that the proposed NBTI-aware allocation strategy can guarantee from 10% and up to 30% lower degradation compared to classical strategies, under different operating scenarios and under process variability.